These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 28186910)

  • 1. Robustness Analysis on Dual Neural Network-based $k$ WTA With Input Noise.
    Feng R; Leung CS; Sum J
    IEEE Trans Neural Netw Learn Syst; 2018 Apr; 29(4):1082-1094. PubMed ID: 28186910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Time-Varying Multiplicative Noise on DNN- k WTA Model.
    Lu W; Zheng Y; Leung CS
    IEEE Trans Neural Netw Learn Syst; 2023 Oct; PP():. PubMed ID: 37796669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Properties and Performance of Imperfect Dual Neural Network-Based kWTA Networks.
    Feng R; Leung CS; Sum J; Xiao Y
    IEEE Trans Neural Netw Learn Syst; 2015 Sep; 26(9):2188-93. PubMed ID: 25376043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNN-kWTA With Bounded Random Offset Voltage Drifts in Threshold Logic Units.
    Lu W; Leung CS; Sum J; Xiao Y
    IEEE Trans Neural Netw Learn Syst; 2022 Jul; 33(7):3184-3192. PubMed ID: 33513113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of Imperfections on the Operational Correctness of DNN-kWTA Model.
    Lu W; Leung CS; Sum J
    IEEE Trans Neural Netw Learn Syst; 2024 Oct; 35(10):15021-15029. PubMed ID: 37310825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On Wang $k$ WTA With Input Noise, Output Node Stochastic, and Recurrent State Noise.
    Sum J; Leung CS; Ho KI
    IEEE Trans Neural Netw Learn Syst; 2018 Sep; 29(9):4212-4222. PubMed ID: 29989975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Initialization-Based k-Winners-Take-All Neural Network Model Using Modified Gradient Descent.
    Zhang Y; Li S; Geng G
    IEEE Trans Neural Netw Learn Syst; 2023 Aug; 34(8):4130-4138. PubMed ID: 34752408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis on the convergence time of dual neural network-based kWTA.
    Xiao Y; Liu Y; Leung CS; Sum JP; Ho K
    IEEE Trans Neural Netw Learn Syst; 2012 Apr; 23(4):676-82. PubMed ID: 24805051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A general mean-based iterative winner-take-all neural network.
    Yang JF; Chen CM; Wang WC; Lee JY
    IEEE Trans Neural Netw; 1995; 6(1):14-24. PubMed ID: 18263281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of a Winner-Take-All Neural Network.
    KINCAID TG; COHEN MA; FANG Y
    Neural Netw; 1996 Oct; 9(7):1141-1154. PubMed ID: 12662589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spike-Based Winner-Take-All Computation: Fundamental Limits and Order-Optimal Circuits.
    Su L; Chang CJ; Lynch N
    Neural Comput; 2019 Dec; 31(12):2523-2561. PubMed ID: 31614103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probabilistic robustness estimates for feed-forward neural networks.
    Couellan N
    Neural Netw; 2021 Oct; 142():138-147. PubMed ID: 34000561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Distributed k-Winners-Take-All Model With Binary Consensus Protocols.
    Wang X; Yang S; Guo Z; Ge Q; Wen S; Huang T
    IEEE Trans Cybern; 2024 May; 54(5):3327-3337. PubMed ID: 38051607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distributed k-Winners-Take-All Network: An Optimization Perspective.
    Zhang Y; Li S; Weng J
    IEEE Trans Cybern; 2023 Aug; 53(8):5069-5081. PubMed ID: 35576426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis on the inherent noise tolerance of feedforward network and one noise-resilient structure.
    Lu W; Zhang Z; Qin F; Zhang W; Lu Y; Liu Y; Zheng Y
    Neural Netw; 2023 Aug; 165():786-798. PubMed ID: 37418861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generic predictions of output probability based on complexities of inputs and outputs.
    Dingle K; Pérez GV; Louis AA
    Sci Rep; 2020 Mar; 10(1):4415. PubMed ID: 32157160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust k-WTA Network Generation, Analysis, and Applications to Multiagent Coordination.
    Qi Y; Jin L; Luo X; Shi Y; Liu M
    IEEE Trans Cybern; 2022 Aug; 52(8):8515-8527. PubMed ID: 34133299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computation with spikes in a winner-take-all network.
    Oster M; Douglas R; Liu SC
    Neural Comput; 2009 Sep; 21(9):2437-65. PubMed ID: 19548795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Including long-range dependence in integrate-and-fire models of the high interspike-interval variability of cortical neurons.
    Jackson BS
    Neural Comput; 2004 Oct; 16(10):2125-95. PubMed ID: 15333210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A class of finite-time dual neural networks for solving quadratic programming problems and its k-winners-take-all application.
    Li S; Li Y; Wang Z
    Neural Netw; 2013 Mar; 39():27-39. PubMed ID: 23334164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.