These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 28187256)

  • 1. Simulating Substrate Recognition and Oxidation in Laccases: From Description to Design.
    Lucas MF; Monza E; Jørgensen LJ; Ernst HA; Piontek K; Bjerrum MJ; Martinez ÁT; Camarero S; Guallar V
    J Chem Theory Comput; 2017 Mar; 13(3):1462-1467. PubMed ID: 28187256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into Laccase Engineering from Molecular Simulations: Toward a Binding-Focused Strategy.
    Monza E; Lucas MF; Camarero S; Alejaldre LC; Martínez AT; Guallar V
    J Phys Chem Lett; 2015 Apr; 6(8):1447-53. PubMed ID: 26263150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beyond natural laccases: extension of their potential applications by protein engineering.
    Stanzione I; Pezzella C; Giardina P; Sannia G; Piscitelli A
    Appl Microbiol Biotechnol; 2020 Feb; 104(3):915-924. PubMed ID: 31834437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In silico study of structural determinants modulating the redox potential of Rigidoporus lignosus and other fungal laccases.
    Cambria MT; Gullotto D; Garavaglia S; Cambria A
    J Biomol Struct Dyn; 2012; 30(1):89-101. PubMed ID: 22571435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laccase engineering by rational and evolutionary design.
    Pardo I; Camarero S
    Cell Mol Life Sci; 2015 Mar; 72(5):897-910. PubMed ID: 25586560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineered Bacillus pumilus laccase-like multi-copper oxidase for enhanced oxidation of the lignin model compound guaiacol.
    Ihssen J; Jankowska D; Ramsauer T; Reiss R; Luchsinger R; Wiesli L; Schubert M; Thöny-Meyer L; Faccio G
    Protein Eng Des Sel; 2017 Jun; 30(6):449-453. PubMed ID: 28482039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure, functionality and tuning up of laccases for lignocellulose and other industrial applications.
    Sitarz AK; Mikkelsen JD; Meyer AS
    Crit Rev Biotechnol; 2016; 36(1):70-86. PubMed ID: 25198436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Replacement of oxidizable residues predicted by QM-MM simulation of a fungal laccase generates variants with higher operational stability.
    Avelar M; Pastor N; Ramirez-Ramirez J; Ayala M
    J Inorg Biochem; 2018 Jan; 178():125-133. PubMed ID: 29128497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of industrially relevant laccases: prokaryotic style.
    Santhanam N; Vivanco JM; Decker SR; Reardon KF
    Trends Biotechnol; 2011 Oct; 29(10):480-9. PubMed ID: 21640417
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How is the reactivity of laccase affected by single-point mutations? Engineering laccase for improved activity towards sterically demanding substrates.
    Galli C; Gentili P; Jolivalt C; Madzak C; Vadalà R
    Appl Microbiol Biotechnol; 2011 Jul; 91(1):123-31. PubMed ID: 21468703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular docking and dynamics simulation analyses unraveling the differential enzymatic catalysis by plant and fungal laccases with respect to lignin biosynthesis and degradation.
    Awasthi M; Jaiswal N; Singh S; Pandey VP; Dwivedi UN
    J Biomol Struct Dyn; 2015 Sep; 33(9):1835-49. PubMed ID: 25301391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A designed bifunctional laccase/β-1,3-1,4-glucanase enzyme shows synergistic sugar release from milled sugarcane bagasse.
    Furtado GP; Ribeiro LF; Lourenzoni MR; Ward RJ
    Protein Eng Des Sel; 2013 Jan; 26(1):15-23. PubMed ID: 23012443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laccase engineering: from rational design to directed evolution.
    Mate DM; Alcalde M
    Biotechnol Adv; 2015; 33(1):25-40. PubMed ID: 25545886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laccase Engineering: Redox Potential Is Not the Only Activity-Determining Feature in the Metalloproteins.
    Ali M; Bhardwaj P; Ishqi HM; Shahid M; Islam A
    Molecules; 2023 Aug; 28(17):. PubMed ID: 37687038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expanding the laccase-toolbox: a laccase from Corynebacterium glutamicum with phenol coupling and cuprous oxidase activity.
    Ricklefs E; Winkler N; Koschorreck K; Urlacher VB
    J Biotechnol; 2014 Dec; 191():46-53. PubMed ID: 24910971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of catalysis and functional expression of a bacterial laccase by single amino acid replacement.
    Nasoohi N; Khajeh K; Mohammadian M; Ranjbar B
    Int J Biol Macromol; 2013 Sep; 60():56-61. PubMed ID: 23707861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fungal Laccases: Fundamentals, Engineering and Classification Update.
    Aza P; Camarero S
    Biomolecules; 2023 Nov; 13(12):. PubMed ID: 38136587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenol-oxidizing laccases from the termite gut.
    Coy MR; Salem TZ; Denton JS; Kovaleva ES; Liu Z; Barber DS; Campbell JH; Davis DC; Buchman GW; Boucias DG; Scharf ME
    Insect Biochem Mol Biol; 2010 Oct; 40(10):723-32. PubMed ID: 20691784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural insight into the oxidation of sinapic acid by CotA laccase.
    Xie T; Liu Z; Liu Q; Wang G
    J Struct Biol; 2015 May; 190(2):155-61. PubMed ID: 25799944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An assessment of the relative contributions of redox and steric issues to laccase specificity towards putative substrates.
    Tadesse MA; D'Annibale A; Galli C; Gentili P; Sergi F
    Org Biomol Chem; 2008 Mar; 6(5):868-78. PubMed ID: 18292878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.