These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 2818726)
1. Substrate specificity and affinity of a protein modulated by bound water molecules. Quiocho FA; Wilson DK; Vyas NK Nature; 1989 Aug; 340(6232):404-7. PubMed ID: 2818726 [TBL] [Abstract][Full Text] [Related]
2. Quantum mechanical model assembly study on the energetics of binding of arabinose, fucose, and galactose to L-arabinose-binding protein. Peräkylä M; Pakkanen TA Proteins; 1994 Dec; 20(4):367-72. PubMed ID: 7731955 [TBL] [Abstract][Full Text] [Related]
3. The 1.6 A crystal structure of the AraC sugar-binding and dimerization domain complexed with D-fucose. Soisson SM; MacDougall-Shackleton B; Schleif R; Wolberger C J Mol Biol; 1997 Oct; 273(1):226-37. PubMed ID: 9367758 [TBL] [Abstract][Full Text] [Related]
4. Sugar-binding and crystallographic studies of an arabinose-binding protein mutant (Met108Leu) that exhibits enhanced affinity and altered specificity. Vermersch PS; Lemon DD; Tesmer JJ; Quiocho FA Biochemistry; 1991 Jul; 30(28):6861-6. PubMed ID: 2069949 [TBL] [Abstract][Full Text] [Related]
5. Computer modelling approach to study the modes of binding of alpha- and beta-anomers of D-galactose, D-fucose and D-glucose to L-arabinose-binding protein. Mukhopadhyay C; Rao VS Int J Biol Macromol; 1989 Aug; 11(4):194-200. PubMed ID: 2489081 [TBL] [Abstract][Full Text] [Related]
6. The 1.7 A refined X-ray structure of the periplasmic glucose/galactose receptor from Salmonella typhimurium. Zou JY; Flocco MM; Mowbray SL J Mol Biol; 1993 Oct; 233(4):739-52. PubMed ID: 8240551 [TBL] [Abstract][Full Text] [Related]
7. A novel serine protease inhibition motif involving a multi-centered short hydrogen bonding network at the active site. Katz BA; Elrod K; Luong C; Rice MJ; Mackman RL; Sprengeler PA; Spencer J; Hataye J; Janc J; Link J; Litvak J; Rai R; Rice K; Sideris S; Verner E; Young W J Mol Biol; 2001 Apr; 307(5):1451-86. PubMed ID: 11292354 [TBL] [Abstract][Full Text] [Related]
8. Thermodynamics of binding of D-galactose and deoxy derivatives thereof to the L-arabinose-binding protein. Daranas AH; Shimizu H; Homans SW J Am Chem Soc; 2004 Sep; 126(38):11870-6. PubMed ID: 15382922 [TBL] [Abstract][Full Text] [Related]
9. Statistical and molecular dynamics studies of buried waters in globular proteins. Park S; Saven JG Proteins; 2005 Aug; 60(3):450-63. PubMed ID: 15937899 [TBL] [Abstract][Full Text] [Related]
10. Do water molecules mediate protein-DNA recognition? Reddy CK; Das A; Jayaram B J Mol Biol; 2001 Nov; 314(3):619-32. PubMed ID: 11846571 [TBL] [Abstract][Full Text] [Related]
11. N-H...O, O-H...O, and C-H...O hydrogen bonds in protein-ligand complexes: strong and weak interactions in molecular recognition. Sarkhel S; Desiraju GR Proteins; 2004 Feb; 54(2):247-59. PubMed ID: 14696187 [TBL] [Abstract][Full Text] [Related]
12. Substrate binding and catalytic mechanism in phospholipase C from Bacillus cereus: a molecular mechanics and molecular dynamics study. da Graça Thrige D; Buur JR; Jørgensen FS Biopolymers; 1997 Sep; 42(3):319-36. PubMed ID: 9279125 [TBL] [Abstract][Full Text] [Related]
13. The mannose-specific bulb lectin from Galanthus nivalis (snowdrop) binds mono- and dimannosides at distinct sites. Structure analysis of refined complexes at 2.3 A and 3.0 A resolution. Hester G; Wright CS J Mol Biol; 1996 Oct; 262(4):516-31. PubMed ID: 8893860 [TBL] [Abstract][Full Text] [Related]
14. Probing the catalytic mechanism of GDP-4-keto-6-deoxy-d-mannose Epimerase/Reductase by kinetic and crystallographic characterization of site-specific mutants. Rosano C; Bisso A; Izzo G; Tonetti M; Sturla L; De Flora A; Bolognesi M J Mol Biol; 2000 Oct; 303(1):77-91. PubMed ID: 11021971 [TBL] [Abstract][Full Text] [Related]
15. Crystal structure of a glutamate/aspartate binding protein complexed with a glutamate molecule: structural basis of ligand specificity at atomic resolution. Hu Y; Fan CP; Fu G; Zhu D; Jin Q; Wang DC J Mol Biol; 2008 Sep; 382(1):99-111. PubMed ID: 18640128 [TBL] [Abstract][Full Text] [Related]
16. An evolvant of Escherichia coli that employs the L-fucose pathway also for growth on L-galactose and D-arabinose. Zhu Y; Lin EC J Mol Evol; 1986; 23(3):259-66. PubMed ID: 3100814 [TBL] [Abstract][Full Text] [Related]
17. A Pro to Gly mutation in the hinge of the arabinose-binding protein enhances binding and alters specificity. Sugar-binding and crystallographic studies. Vermersch PS; Tesmer JJ; Lemon DD; Quiocho FA J Biol Chem; 1990 Sep; 265(27):16592-603. PubMed ID: 2204627 [TBL] [Abstract][Full Text] [Related]
18. Inversion of receptor binding preferences by mutagenesis: free energy thermodynamic integration studies on sugar binding to L-arabinose binding proteins. Zacharias M; Straatsma TP; McCammon JA; Quiocho FA Biochemistry; 1993 Jul; 32(29):7428-34. PubMed ID: 8338840 [TBL] [Abstract][Full Text] [Related]
19. Structural and dynamic roles of permanent water molecules in ligand molecular recognition by chicken liver bile acid binding protein. Ricchiuto P; Rocco AG; Gianazza E; Corrada D; Beringhelli T; Eberini I J Mol Recognit; 2008; 21(5):348-54. PubMed ID: 18654997 [TBL] [Abstract][Full Text] [Related]
20. Crystallographic analysis of the epimeric and anomeric specificity of the periplasmic transport/chemosensory protein receptor for D-glucose and D-galactose. Vyas MN; Vyas NK; Quiocho FA Biochemistry; 1994 Apr; 33(16):4762-8. PubMed ID: 8161535 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]