These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 2818726)
21. Crystal structures of Escherichia coli dihydrofolate reductase complexed with 5-formyltetrahydrofolate (folinic acid) in two space groups: evidence for enolization of pteridine O4. Lee H; Reyes VM; Kraut J Biochemistry; 1996 Jun; 35(22):7012-20. PubMed ID: 8679526 [TBL] [Abstract][Full Text] [Related]
22. Crystal structure of a catalytic-site mutant alpha-amylase from Bacillus subtilis complexed with maltopentaose. Fujimoto Z; Takase K; Doui N; Momma M; Matsumoto T; Mizuno H J Mol Biol; 1998 Mar; 277(2):393-407. PubMed ID: 9514750 [TBL] [Abstract][Full Text] [Related]
23. Towards understanding the interaction between oligosaccharides and water molecules. Almond A Carbohydr Res; 2005 Apr; 340(5):907-20. PubMed ID: 15780256 [TBL] [Abstract][Full Text] [Related]
24. Structures of the Erythrina corallodendron lectin and of its complexes with mono- and disaccharides. Elgavish S; Shaanan B J Mol Biol; 1998 Apr; 277(4):917-32. PubMed ID: 9545381 [TBL] [Abstract][Full Text] [Related]
25. Roles of individual enzyme-substrate interactions by alpha-1,3-galactosyltransferase in catalysis and specificity. Zhang Y; Swaminathan GJ; Deshpande A; Boix E; Natesh R; Xie Z; Acharya KR; Brew K Biochemistry; 2003 Nov; 42(46):13512-21. PubMed ID: 14621997 [TBL] [Abstract][Full Text] [Related]
26. Mapping the energetics of water-protein and water-ligand interactions with the "natural" HINT forcefield: predictive tools for characterizing the roles of water in biomolecules. Amadasi A; Spyrakis F; Cozzini P; Abraham DJ; Kellogg GE; Mozzarelli A J Mol Biol; 2006 Apr; 358(1):289-309. PubMed ID: 16497327 [TBL] [Abstract][Full Text] [Related]
27. Tertiary and quaternary structures of photoreactive Fe-type nitrile hydratase from Rhodococcus sp. N-771: roles of hydration water molecules in stabilizing the structures and the structural origin of the substrate specificity of the enzyme. Nakasako M; Odaka M; Yohda M; Dohmae N; Takio K; Kamiya N; Endo I Biochemistry; 1999 Aug; 38(31):9887-98. PubMed ID: 10433695 [TBL] [Abstract][Full Text] [Related]
28. Identification of common structural features of binding sites in galactose-specific proteins. Sujatha MS; Balaji PV Proteins; 2004 Apr; 55(1):44-65. PubMed ID: 14997539 [TBL] [Abstract][Full Text] [Related]
29. SuperStar: a knowledge-based approach for identifying interaction sites in proteins. Verdonk ML; Cole JC; Taylor R J Mol Biol; 1999 Jun; 289(4):1093-108. PubMed ID: 10369784 [TBL] [Abstract][Full Text] [Related]
30. Structural diversity within the mononuclear and binuclear active sites of N-acetyl-D-glucosamine-6-phosphate deacetylase. Hall RS; Brown S; Fedorov AA; Fedorov EV; Xu C; Babbitt PC; Almo SC; Raushel FM Biochemistry; 2007 Jul; 46(27):7953-62. PubMed ID: 17567048 [TBL] [Abstract][Full Text] [Related]
31. A novel calcium binding site in the galactose-binding protein of bacterial transport and chemotaxis. Vyas NK; Vyas MN; Quiocho FA Nature; 1987 Jun 18-24; 327(6123):635-8. PubMed ID: 3600760 [TBL] [Abstract][Full Text] [Related]
32. Water molecules in DNA recognition II: a molecular dynamics view of the structure and hydration of the trp operator. Bonvin AM; Sunnerhagen M; Otting G; van Gunsteren WF J Mol Biol; 1998 Oct; 282(4):859-73. PubMed ID: 9743632 [TBL] [Abstract][Full Text] [Related]
33. Detection of long-lived bound water molecules in complexes of human dihydrofolate reductase with methotrexate and NADPH. Meiering EM; Wagner G J Mol Biol; 1995 Mar; 247(2):294-308. PubMed ID: 7707376 [TBL] [Abstract][Full Text] [Related]
34. Protein-ligand energetics assessed using deoxy and fluorodeoxy sugars in equilibrium binding and high resolution crystallographic studies. Vermersch PS; Tesmer JJ; Quiocho FA J Mol Biol; 1992 Aug; 226(4):923-9. PubMed ID: 1518062 [TBL] [Abstract][Full Text] [Related]
35. Comparison of the periplasmic receptors for L-arabinose, D-glucose/D-galactose, and D-ribose. Structural and Functional Similarity. Vyas NK; Vyas MN; Quiocho FA J Biol Chem; 1991 Mar; 266(8):5226-37. PubMed ID: 1848243 [TBL] [Abstract][Full Text] [Related]
36. Novel substrate specificity engineered in the arabinose binding protein. Declerck N; Abelson J Protein Eng; 1994 Aug; 7(8):997-1004. PubMed ID: 7809039 [TBL] [Abstract][Full Text] [Related]
37. Equilibrium and transient kinetic studies of the binding of cytochalasin B to the L-arabinose-H+ symport protein of Escherichia coli. Determination of the sugar binding specificity of the L-arabinose-H+ symporter. Walmsley AR; Petro KR; Henderson PJ Eur J Biochem; 1993 Jul; 215(1):43-54. PubMed ID: 8344284 [TBL] [Abstract][Full Text] [Related]
38. Proton nuclear magnetic resonance spectroscopy and ligand binding dynamics of the Escherichia coli L-arabinose binding protein. Clark AF; Gerken TA; Hogg RW Biochemistry; 1982 Apr; 21(9):2227-33. PubMed ID: 7046797 [TBL] [Abstract][Full Text] [Related]
39. The role of water molecules in stereoselectivity of glucose/galactose-binding protein. Kim M; Cho AE Sci Rep; 2016 Nov; 6():36807. PubMed ID: 27827455 [TBL] [Abstract][Full Text] [Related]
40. Galactose transport in Saccharomyces cerevisiae. I. Nonmetabolized sugars as substrates and inducers of the galactose transport system. Cirillo VP J Bacteriol; 1968 May; 95(5):1727-31. PubMed ID: 5650080 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]