These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 28187338)
1. A Hybrid Latent Class Analysis Modeling Approach to Analyze Urban Expressway Crash Risk. Yu R; Wang X; Abdel-Aty M Accid Anal Prev; 2017 Apr; 101():37-43. PubMed ID: 28187338 [TBL] [Abstract][Full Text] [Related]
2. Crash risk analysis for Shanghai urban expressways: A Bayesian semi-parametric modeling approach. Yu R; Wang X; Yang K; Abdel-Aty M Accid Anal Prev; 2016 Oct; 95(Pt B):495-502. PubMed ID: 26847949 [TBL] [Abstract][Full Text] [Related]
3. Using hierarchical Bayesian binary probit models to analyze crash injury severity on high speed facilities with real-time traffic data. Yu R; Abdel-Aty M Accid Anal Prev; 2014 Jan; 62():161-7. PubMed ID: 24172082 [TBL] [Abstract][Full Text] [Related]
4. Optimizing crash risk models for freeway segments: A focus on the heterogeneous effects of road geometric design features, traffic operation status, and crash units. Li J; Li C; Zhao X Accid Anal Prev; 2024 Sep; 205():107665. PubMed ID: 38901161 [TBL] [Abstract][Full Text] [Related]
5. Impact of data aggregation approaches on the relationships between operating speed and traffic safety. Yu R; Quddus M; Wang X; Yang K Accid Anal Prev; 2018 Nov; 120():304-310. PubMed ID: 30195137 [TBL] [Abstract][Full Text] [Related]
6. Exploring crash mechanisms with microscopic traffic flow variables: A hybrid approach with latent class logit and path analysis models. Yu R; Zheng Y; Abdel-Aty M; Gao Z Accid Anal Prev; 2019 Apr; 125():70-78. PubMed ID: 30731317 [TBL] [Abstract][Full Text] [Related]
7. Multi-level Bayesian safety analysis with unprocessed Automatic Vehicle Identification data for an urban expressway. Shi Q; Abdel-Aty M; Yu R Accid Anal Prev; 2016 Mar; 88():68-76. PubMed ID: 26722989 [TBL] [Abstract][Full Text] [Related]
8. Investigating the different characteristics of weekday and weekend crashes. Yu R; Abdel-Aty M J Safety Res; 2013 Sep; 46():91-7. PubMed ID: 23932690 [TBL] [Abstract][Full Text] [Related]
9. Identifying crash-prone traffic conditions under different weather on freeways. Xu C; Wang W; Liu P J Safety Res; 2013 Sep; 46():135-44. PubMed ID: 23932695 [TBL] [Abstract][Full Text] [Related]
10. A Bayesian ridge regression analysis of congestion's impact on urban expressway safety. Shi Q; Abdel-Aty M; Lee J Accid Anal Prev; 2016 Mar; 88():124-37. PubMed ID: 26760688 [TBL] [Abstract][Full Text] [Related]
11. Development of a real-time crash risk prediction model incorporating the various crash mechanisms across different traffic states. Xu C; Wang W; Liu P; Zhang F Traffic Inj Prev; 2015; 16(1):28-35. PubMed ID: 24697528 [TBL] [Abstract][Full Text] [Related]
12. Multi-level Bayesian analyses for single- and multi-vehicle freeway crashes. Yu R; Abdel-Aty M Accid Anal Prev; 2013 Sep; 58():97-105. PubMed ID: 23727550 [TBL] [Abstract][Full Text] [Related]
13. Analysis of safety factors for urban expressways considering the effect of congestion in Shanghai, China. Sun J; Li T; Li F; Chen F Accid Anal Prev; 2016 Oct; 95(Pt B):503-511. PubMed ID: 26721569 [TBL] [Abstract][Full Text] [Related]
14. Multivariate random-parameters zero-inflated negative binomial regression model: an application to estimate crash frequencies at intersections. Dong C; Clarke DB; Yan X; Khattak A; Huang B Accid Anal Prev; 2014 Sep; 70():320-9. PubMed ID: 24841002 [TBL] [Abstract][Full Text] [Related]
15. Effect of driver's age and side of impact on crash severity along urban freeways: a mixed logit approach. Haleem K; Gan A J Safety Res; 2013 Sep; 46():67-76. PubMed ID: 23932687 [TBL] [Abstract][Full Text] [Related]
16. On the nature of over-dispersion in motor vehicle crash prediction models. Mitra S; Washington S Accid Anal Prev; 2007 May; 39(3):459-68. PubMed ID: 17161374 [TBL] [Abstract][Full Text] [Related]
17. Micro-level safety risk assessment model for a two-lane heterogeneous traffic environment in a developing country: A comparative crash probability modeling approach. Mahmud SMS; Ferreira L; Hoque MS; Tavassoli A J Safety Res; 2019 Jun; 69():125-134. PubMed ID: 31235224 [TBL] [Abstract][Full Text] [Related]
18. Analysis of real-time crash risk for expressway ramps using traffic, geometric, trip generation, and socio-demographic predictors. Wang L; Abdel-Aty M; Lee J; Shi Q Accid Anal Prev; 2019 Jan; 122():378-384. PubMed ID: 28689932 [TBL] [Abstract][Full Text] [Related]
19. Hotspot Identification for Shanghai Expressways Using the Quantitative Risk Assessment Method. Chen C; Li T; Sun J; Chen F Int J Environ Res Public Health; 2016 Dec; 14(1):. PubMed ID: 28036009 [TBL] [Abstract][Full Text] [Related]
20. A generalized nonlinear model-based mixed multinomial logit approach for crash data analysis. Zeng Z; Zhu W; Ke R; Ash J; Wang Y; Xu J; Xu X Accid Anal Prev; 2017 Feb; 99(Pt A):51-65. PubMed ID: 27870986 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]