These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 28187387)
21. Biodegradation of petroleum products in experimental plots in Antarctic marine sediments is location dependent. Powell SM; Harvey PM; Stark JS; Snape I; Riddle MJ Mar Pollut Bull; 2007 Apr; 54(4):434-40. PubMed ID: 17222431 [TBL] [Abstract][Full Text] [Related]
22. Treatment of petroleum hydrocarbon polluted environment through bioremediation: a review. Singh K; Chandra S Pak J Biol Sci; 2014 Jan; 17(1):1-8. PubMed ID: 24783772 [TBL] [Abstract][Full Text] [Related]
23. Determination of microbial carbon sources and cycling during remediation of petroleum hydrocarbon impacted soil using natural abundance (14)C analysis of PLFA. Cowie BR; Greenberg BM; Slater GF Environ Sci Technol; 2010 Apr; 44(7):2322-7. PubMed ID: 20196610 [TBL] [Abstract][Full Text] [Related]
24. Fate and transport of petroleum hydrocarbons in engineered biopiles in polar regions. Whelan MJ; Coulon F; Hince G; Rayner J; McWatters R; Spedding T; Snape I Chemosphere; 2015 Jul; 131():232-40. PubMed ID: 25563162 [TBL] [Abstract][Full Text] [Related]
25. Toxicity of diesel contaminated soils to the subantarctic earthworm Microscolex macquariensis. Mooney TJ; King CK; Wasley J; Andrew NR Environ Toxicol Chem; 2013 Feb; 32(2):370-7. PubMed ID: 23147807 [TBL] [Abstract][Full Text] [Related]
26. Combination of biochar amendment and phytoremediation for hydrocarbon removal in petroleum-contaminated soil. Han T; Zhao Z; Bartlam M; Wang Y Environ Sci Pollut Res Int; 2016 Nov; 23(21):21219-21228. PubMed ID: 27491422 [TBL] [Abstract][Full Text] [Related]
27. Petroleum hydrocarbon biodegradation under seasonal freeze-thaw soil temperature regimes in contaminated soils from a sub-Arctic site. Chang W; Klemm S; Beaulieu C; Hawari J; Whyte L; Ghoshal S Environ Sci Technol; 2011 Feb; 45(3):1061-6. PubMed ID: 21194195 [TBL] [Abstract][Full Text] [Related]
28. Combination of zeolite barrier and bio sparging techniques to enhance efficiency of organic hydrocarbon remediation in a model of shallow groundwater. Ahmadnezhad Z; Vaezihir A; Schüth C; Zarrini G Chemosphere; 2021 Jun; 273():128555. PubMed ID: 33087257 [TBL] [Abstract][Full Text] [Related]
29. Investigation of evaporation and biodegradation of fuel spills in Antarctica. I. A chemical approach using GC-FID. Snape I; Harvey PM; Ferguson SH; Rayner JL; Revill AT Chemosphere; 2005 Dec; 61(10):1485-94. PubMed ID: 15990148 [TBL] [Abstract][Full Text] [Related]
30. Waste management and contaminated site remediation practices after oil spill: a case study. Oliveira FJ; da Rocha Calixto RO; Felippe CE; de Franca FP Waste Manag Res; 2013 Dec; 31(12):1190-4. PubMed ID: 24163378 [TBL] [Abstract][Full Text] [Related]
31. An overview of permeable reactive barriers for in situ sustainable groundwater remediation. Obiri-Nyarko F; Grajales-Mesa SJ; Malina G Chemosphere; 2014 Sep; 111():243-59. PubMed ID: 24997925 [TBL] [Abstract][Full Text] [Related]
32. CO2-efflux measurements for evaluating source zone natural attenuation rates in a petroleum hydrocarbon contaminated aquifer. Sihota NJ; Singurindy O; Mayer KU Environ Sci Technol; 2011 Jan; 45(2):482-8. PubMed ID: 21142178 [TBL] [Abstract][Full Text] [Related]
33. Changes in liquid water alter nutrient bioavailability and gas diffusion in frozen antarctic soils contaminated with petroleum hydrocarbons. Harvey AN; Snape I; Siciliano SD Environ Toxicol Chem; 2012 Feb; 31(2):395-401. PubMed ID: 22102214 [TBL] [Abstract][Full Text] [Related]
34. The influence of vegetation and soil properties on springtail communities in a diesel-contaminated soil. Errington I; King CK; Houlahan S; George SC; Michie A; Hose GC Sci Total Environ; 2018 Apr; 619-620():1098-1104. PubMed ID: 29734588 [TBL] [Abstract][Full Text] [Related]
35. Toxicity of fuel-contaminated soil to Antarctic moss and terrestrial algae. Nydahl AC; King CK; Wasley J; Jolley DF; Robinson SA Environ Toxicol Chem; 2015 Sep; 34(9):2004-12. PubMed ID: 25891024 [TBL] [Abstract][Full Text] [Related]
36. Exophiala macquariensis sp. nov., a cold adapted black yeast species recovered from a hydrocarbon contaminated sub-Antarctic soil. Zhang C; Sirijovski N; Adler L; Ferrari BC Fungal Biol; 2019 Feb; 123(2):151-158. PubMed ID: 30709520 [TBL] [Abstract][Full Text] [Related]
37. Effectiveness and mechanism of natural attenuation at a petroleum-hydrocarbon contaminated site. Lv H; Su X; Wang Y; Dai Z; Liu M Chemosphere; 2018 Sep; 206():293-301. PubMed ID: 29753292 [TBL] [Abstract][Full Text] [Related]
38. Enhanced removal of petroleum hydrocarbons using a bioelectrochemical remediation system with pre-cultured anodes. Venkidusamy K; Megharaj M; Marzorati M; Lockington R; Naidu R Sci Total Environ; 2016 Jan; 539():61-69. PubMed ID: 26360455 [TBL] [Abstract][Full Text] [Related]
39. Assessment of five bioaccessibility assays for predicting the efficacy of petroleum hydrocarbon biodegradation in aged contaminated soils. Dandie CE; Weber J; Aleer S; Adetutu EM; Ball AS; Juhasz AL Chemosphere; 2010 Nov; 81(9):1061-8. PubMed ID: 20947131 [TBL] [Abstract][Full Text] [Related]
40. [Bioremediation of petroleum hydrocarbon-contaminated soils by cold-adapted microorganisms: research advance]. Wang SJ; Wang X; Lu GL; Wang QH; Li FS; Guo GL Ying Yong Sheng Tai Xue Bao; 2011 Apr; 22(4):1082-8. PubMed ID: 21774336 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]