BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 28187392)

  • 1. Reductive immobilization of pertechnetate in soil and groundwater using synthetic pyrite nanoparticles.
    Huo L; Xie W; Qian T; Guan X; Zhao D
    Chemosphere; 2017 May; 174():456-465. PubMed ID: 28187392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immobilization of hexavalent chromium in soil and groundwater using synthetic pyrite particles.
    Wang T; Qian T; Huo L; Li Y; Zhao D
    Environ Pollut; 2019 Dec; 255(Pt 1):112992. PubMed ID: 31541830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cr(VI)-contaminated groundwater remediation with simulated permeable reactive barrier (PRB) filled with natural pyrite as reactive material: Environmental factors and effectiveness.
    Liu Y; Mou H; Chen L; Mirza ZA; Liu L
    J Hazard Mater; 2015 Nov; 298():83-90. PubMed ID: 26026959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immobilization of perrhenate using synthetic pyrite particles: Effectiveness and remobilization potential.
    Wang T; Qian T; Zhao D; Liu X; Ding Q
    Sci Total Environ; 2020 Jul; 725():138423. PubMed ID: 32464748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reductive immobilization of
    Rodríguez DM; Mayordomo N; Schild D; Shams Aldin Azzam S; Brendler V; Müller K; Stumpf T
    Chemosphere; 2021 Oct; 281():130904. PubMed ID: 34289606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. (99)Tc(VII) Retardation, Reduction, and Redox Rate Scaling in Naturally Reduced Sediments.
    Liu Y; Liu C; Kukkadapu RK; McKinley JP; Zachara J; Plymale AE; Miller MD; Varga T; Resch CT
    Environ Sci Technol; 2015 Nov; 49(22):13403-12. PubMed ID: 26469942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reductive sequestration of pertechnetate (⁹⁹TcO₄⁻) by nano zerovalent iron (nZVI) transformed by abiotic sulfide.
    Fan D; Anitori RP; Tebo BM; Tratnyek PG; Lezama Pacheco JS; Kukkadapu RK; Engelhard MH; Bowden ME; Kovarik L; Arey BW
    Environ Sci Technol; 2013 May; 47(10):5302-10. PubMed ID: 23611018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immobilization of selenite in soil and groundwater using stabilized Fe-Mn binary oxide nanoparticles.
    Xie W; Liang Q; Qian T; Zhao D
    Water Res; 2015 Mar; 70():485-94. PubMed ID: 25577492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immobilization of As(III) in soil and groundwater using a new class of polysaccharide stabilized Fe-Mn oxide nanoparticles.
    An B; Zhao D
    J Hazard Mater; 2012 Apr; 211-212():332-41. PubMed ID: 22119304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics, kinetics, thermodynamics and long-term effects of zerovalent iron/pyrite in remediation of Cr(VI)-contaminated soil.
    Min X; Li Q; Zhang X; Liu L; Xie Y; Guo L; Liao Q; Yang Z; Yang W
    Environ Pollut; 2021 Nov; 289():117830. PubMed ID: 34325095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter.
    Zhang M; He F; Zhao D; Hao X
    Water Res; 2011 Mar; 45(7):2401-14. PubMed ID: 21376362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of iron sulfide particles for groundwater and soil remediation: A review.
    Gong Y; Tang J; Zhao D
    Water Res; 2016 Feb; 89():309-20. PubMed ID: 26707732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of iron nanoparticles on technetium-contaminated groundwater and sediment microbial communities.
    Newsome L; Morris K; Cleary A; Masters-Waage NK; Boothman C; Joshi N; Atherton N; Lloyd JR
    J Hazard Mater; 2019 Feb; 364():134-142. PubMed ID: 30343175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles.
    Xu Y; Zhao D
    Water Res; 2007 May; 41(10):2101-8. PubMed ID: 17412389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Technetium reduction in sediments of a shallow aquifer exhibiting dissimilatory iron reduction potential.
    Wildung RE; Li SW; Murray CJ; Krupka KM; Xie Y; Hess NJ; Roden EE
    FEMS Microbiol Ecol; 2004 Jul; 49(1):151-62. PubMed ID: 19712393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient removal of uranium from aqueous solution by zero-valent iron nanoparticle and its graphene composite.
    Li ZJ; Wang L; Yuan LY; Xiao CL; Mei L; Zheng LR; Zhang J; Yang JH; Zhao YL; Zhu ZT; Chai ZF; Shi WQ
    J Hazard Mater; 2015 Jun; 290():26-33. PubMed ID: 25734531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mobilization of technetium from reduced sediments under seawater inundation and intrusion scenarios.
    Eagling J; Worsfold PJ; Blake WH; Keith-Roach MJ
    Environ Sci Technol; 2012 Nov; 46(21):11798-803. PubMed ID: 23050555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing the impact of preload on pyrite-rich sediment and groundwater quality.
    Karikari-Yeboah O; Addai-Mensah J
    Environ Monit Assess; 2017 Feb; 189(2):58. PubMed ID: 28091885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near shore groundwater acidification during and after a hydrological drought in the Lower Lakes, South Australia.
    Leyden E; Cook F; Hamilton B; Zammit B; Barnett L; Lush AM; Stone D; Mosley L
    J Contam Hydrol; 2016 Jun; 189():44-57. PubMed ID: 27107321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stabilization of Fe(0) nanoparticles with silica fume for enhanced transport and remediation of hexavalent chromium in water and soil.
    Li Y; Li T; Jini Z
    J Environ Sci (China); 2011; 23(7):1211-8. PubMed ID: 22125917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.