These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
675 related articles for article (PubMed ID: 28187393)
21. An effective thermal therapy against cancer using an E-jet 3D-printing method to prepare implantable magnetocaloric mats. Yang Y; Tong C; Zhong J; Huang R; Tan W; Tan Z J Biomed Mater Res B Appl Biomater; 2018 Jul; 106(5):1827-1841. PubMed ID: 28914992 [TBL] [Abstract][Full Text] [Related]
22. Mean-field and linear regime approach to magnetic hyperthermia of core-shell nanoparticles: can tiny nanostructures fight cancer? Carrião MS; Bakuzis AF Nanoscale; 2016 Apr; 8(15):8363-77. PubMed ID: 27046437 [TBL] [Abstract][Full Text] [Related]
23. Synergistic antibacterial activity of compact silver/magnetite core-shell nanoparticles core shell against Gram-negative foodborne pathogens. Sharaf EM; Hassan A; Al-Salmi FA; Albalwe FM; Albalawi HMR; Darwish DB; Fayad E Front Microbiol; 2022; 13():929491. PubMed ID: 36118244 [TBL] [Abstract][Full Text] [Related]
24. Silver nanocrystals sensitize magnetic-nanoparticle-mediated thermo-induced killing of cancer cells. Liu L; Ni F; Zhang J; Jiang X; Lu X; Guo Z; Xu R Acta Biochim Biophys Sin (Shanghai); 2011 Apr; 43(4):316-23. PubMed ID: 21377996 [TBL] [Abstract][Full Text] [Related]
26. A novel strategy combining magnetic particle hyperthermia pulses with enhanced performance binary ferrite carriers for effective in vitro manipulation of primary human osteogenic sarcoma cells. Makridis A; Tziomaki M; Topouridou K; Yavropoulou MP; Yovos JG; Kalogirou O; Samaras T; Angelakeris M Int J Hyperthermia; 2016 Nov; 32(7):778-85. PubMed ID: 27442884 [TBL] [Abstract][Full Text] [Related]
27. Thermosensitive/superparamagnetic iron oxide nanoparticle-loaded nanocapsule hydrogels for multiple cancer hyperthermia. Zhang ZQ; Song SC Biomaterials; 2016 Nov; 106():13-23. PubMed ID: 27543919 [TBL] [Abstract][Full Text] [Related]
28. Facile synthesis of water-stable magnetite nanoparticles for clinical MRI and magnetic hyperthermia applications. Maity D; Chandrasekharan P; Yang CT; Chuang KH; Shuter B; Xue JM; Ding J; Feng SS Nanomedicine (Lond); 2010 Dec; 5(10):1571-84. PubMed ID: 21143034 [TBL] [Abstract][Full Text] [Related]
29. Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications. Shi D; Sadat ME; Dunn AW; Mast DB Nanoscale; 2015 May; 7(18):8209-32. PubMed ID: 25899408 [TBL] [Abstract][Full Text] [Related]
30. Miola M; Vernè E Nanomedicine (Lond); 2022 Apr; 17(8):499-511. PubMed ID: 35293220 [TBL] [Abstract][Full Text] [Related]
31. Heat-Generating Iron Oxide Multigranule Nanoclusters for Enhancing Hyperthermic Efficacy in Tumor Treatment. Jeon S; Park BC; Lim S; Yoon HY; Jeon YS; Kim BS; Kim YK; Kim K ACS Appl Mater Interfaces; 2020 Jul; 12(30):33483-33491. PubMed ID: 32614594 [TBL] [Abstract][Full Text] [Related]
32. Stimuli-responsive magnetic nanoparticles for tumor-targeted bimodal imaging and photodynamic/hyperthermia combination therapy. Kim KS; Kim J; Lee JY; Matsuda S; Hideshima S; Mori Y; Osaka T; Na K Nanoscale; 2016 Jun; 8(22):11625-34. PubMed ID: 27217004 [TBL] [Abstract][Full Text] [Related]
33. Biofunctionalization of magnetite nanoparticles with stevioside: effect on the size and thermal behaviour for use in hyperthermia applications. Gupta R; Sharma D Int J Hyperthermia; 2019; 36(1):302-312. PubMed ID: 30729822 [TBL] [Abstract][Full Text] [Related]
34. Assessing magnetic and inductive thermal properties of various surfactants functionalised Fe Rajan A; Sharma M; Sahu NK Sci Rep; 2020 Sep; 10(1):15045. PubMed ID: 32963264 [TBL] [Abstract][Full Text] [Related]
35. Multifunctional PEG encapsulated Fe Wang H; Shen J; Cao G; Gai Z; Hong K; Debata PR; Banerjee P; Zhou S J Mater Chem B; 2013 Dec; 1(45):6225-6234. PubMed ID: 32261695 [TBL] [Abstract][Full Text] [Related]
36. Magnetic delivery of Fe Wu L; Zhang F; Wei Z; Li X; Zhao H; Lv H; Ge R; Ma H; Zhang H; Yang B; Li J; Jiang J Biomater Sci; 2018 Sep; 6(10):2714-2725. PubMed ID: 30151523 [TBL] [Abstract][Full Text] [Related]
37. Thermal and magnetic properties of chitosan-iron oxide nanoparticles. Soares PI; Machado D; Laia C; Pereira LC; Coutinho JT; Ferreira IM; Novo CM; Borges JP Carbohydr Polym; 2016 Sep; 149():382-90. PubMed ID: 27261762 [TBL] [Abstract][Full Text] [Related]
38. Photoacoustic-Enabled Self-Guidance in Magnetic-Hyperthermia Fe@Fe Zhou P; Zhao H; Wang Q; Zhou Z; Wang J; Deng G; Wang X; Liu Q; Yang H; Yang S Adv Healthc Mater; 2018 May; 7(9):e1701201. PubMed ID: 29356419 [TBL] [Abstract][Full Text] [Related]
39. Preparation of Folic Acid-Targeted Temperature-Sensitive Magnetoliposomes and their Antitumor Effects In Vitro and In Vivo. Wang X; Yang R; Yuan C; An Y; Tang Q; Chen D Target Oncol; 2018 Aug; 13(4):481-494. PubMed ID: 29992403 [TBL] [Abstract][Full Text] [Related]
40. Biocompatible Nanoclusters with High Heating Efficiency for Systemically Delivered Magnetic Hyperthermia. Albarqi HA; Wong LH; Schumann C; Sabei FY; Korzun T; Li X; Hansen MN; Dhagat P; Moses AS; Taratula O; Taratula O ACS Nano; 2019 Jun; 13(6):6383-6395. PubMed ID: 31082199 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]