These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 28187408)

  • 1. Analysis of differential gene expression by RNA-seq data in brain areas of laboratory animals.
    Babenko VN; Bragin AO; Spitsina AM; Chadaeva IV; Galieva ER; Orlova GV; Medvedeva IV; Orlov YL
    J Integr Bioinform; 2016 Dec; 13(4):292. PubMed ID: 28187408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Differential alternative splicing in brain regions of rats selected for aggressive behavior].
    Babenko VN; Bragin AO; Chadaeva IV; Markel AL; Orlov YL
    Mol Biol (Mosk); 2017; 51(5):870-880. PubMed ID: 29116075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Principal Components Analysis and Functional Annotation of Differentially Expressed Genes in Brain Regions of Gray Rats Selected for Tame or Aggressive Behavior.
    Chadaeva I; Kozhemyakina R; Shikhevich S; Bogomolov A; Kondratyuk E; Oshchepkov D; Orlov YL; Markel AL
    Int J Mol Sci; 2024 Apr; 25(9):. PubMed ID: 38731836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying differentially spliced genes from two groups of RNA-seq samples.
    Wang W; Qin Z; Feng Z; Wang X; Zhang X
    Gene; 2013 Apr; 518(1):164-70. PubMed ID: 23228854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Comparative Analysis of Behavior in The Open-field Test in Wild Grey Rats (Rattus norvegicus) and in Grey Rats Subjected to Prolonged Selection for Tame And Aggressive Behavior].
    Kozhemyakina RV; Konoshenko MY; Sakharov DG; Smagin DA; Markel AL
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2016; 66(1):92-102. PubMed ID: 27263279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcription Factors as Important Regulators of Changes in Behavior through Domestication of Gray Rats: Quantitative Data from RNA Sequencing.
    Oshchepkov D; Chadaeva I; Kozhemyakina R; Shikhevich S; Sharypova E; Savinkova L; Klimova NV; Tsukanov A; Levitsky VG; Markel AL
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence that "brain-specific" FOX-1, FOX-2, and nPTB alternatively spliced isoforms are produced in the lens.
    Bitel CL; Nathan R; Wong P; Kuppasani S; Matsushita M; Kanazawa H; Frederikse PH
    Curr Eye Res; 2011 Apr; 36(4):321-7. PubMed ID: 21714144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene expression and splicing alterations analyzed by high throughput RNA sequencing of chronic lymphocytic leukemia specimens.
    Liao W; Jordaan G; Nham P; Phan RT; Pelegrini M; Sharma S
    BMC Cancer; 2015 Oct; 15():714. PubMed ID: 26474785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of generic differential RNA processing events from RNA-seq data.
    Tran Vdu T; Souiai O; Romero-Barrios N; Crespi M; Gautheret D
    RNA Biol; 2016; 13(1):59-67. PubMed ID: 26849165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An automated RNA-Seq analysis pipeline to identify and visualize differentially expressed genes and pathways in CHO cells.
    Chen C; Le H; Goudar CT
    Biotechnol Prog; 2015; 31(5):1150-62. PubMed ID: 26150012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrative analyses of RNA editing, alternative splicing, and expression of young genes in human brain transcriptome by deep RNA sequencing.
    Wu DD; Ye LQ; Li Y; Sun YB; Shao Y; Chen C; Zhu Z; Zhong L; Wang L; Irwin DM; Zhang YE; Zhang YP
    J Mol Cell Biol; 2015 Aug; 7(4):314-25. PubMed ID: 26186942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA-Seq profiling reveals aberrant RNA splicing in patient with adult acute myeloid leukemia during treatment.
    Li XY; Yao X; Li SN; Suo AL; Ruan ZP; Liang X; Kong Y; Zhang WG; Yao Y
    Eur Rev Med Pharmacol Sci; 2014; 18(9):1426-33. PubMed ID: 24867525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Genetical aspects of hormonal modification of the stress reactivity. II. Modification in early ontogenesis of the stress reactivity of adult gray rats selected for behavior toward man].
    Dygalo NN; Shishkina GT; Mironov OS; Borodin PM; Naumenko EV
    Genetika; 1986 Mar; 22(3):500-6. PubMed ID: 3957033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene expression analysis of normal appearing brain tissue in an animal model for multiple sclerosis revealed grey matter alterations, but only minor white matter changes.
    Zeis T; Kinter J; Herrero-Herranz E; Weissert R; Schaeren-Wiemers N
    J Neuroimmunol; 2008 Dec; 205(1-2):10-9. PubMed ID: 18950873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel model used to detect differential splice junctions as biomarkers in prostate cancer from RNA-Seq data.
    Rezaeian I; Tavakoli A; Cavallo-Medved D; Porter LA; Rueda L
    J Biomed Inform; 2016 Apr; 60():422-30. PubMed ID: 26992567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying differential alternative splicing events from RNA sequencing data using RNASeq-MATS.
    Park JW; Tokheim C; Shen S; Xing Y
    Methods Mol Biol; 2013; 1038():171-9. PubMed ID: 23872975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis considerations for utilizing RNA-Seq to characterize the brain transcriptome.
    Zheng CL; Kawane S; Bottomly D; Wilmot B
    Int Rev Neurobiol; 2014; 116():21-54. PubMed ID: 25172470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-throughput mRNA and miRNA profiling of epithelial-mesenchymal transition in MDCK cells.
    Shukla P; Vogl C; Wallner B; Rigler D; Müller M; Macho-Maschler S
    BMC Genomics; 2015 Nov; 16():944. PubMed ID: 26572553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A generalized dSpliceType framework to detect differential splicing and differential expression events using RNA-Seq.
    Zhu D; Deng N; Bai C
    IEEE Trans Nanobioscience; 2015 Mar; 14(2):192-202. PubMed ID: 25680210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pairwise comparisons of ten porcine tissues identify differential transcriptional regulation at the gene, isoform, promoter and transcription start site level.
    Farajzadeh L; Hornshøj H; Momeni J; Thomsen B; Larsen K; Hedegaard J; Bendixen C; Madsen LB
    Biochem Biophys Res Commun; 2013 Aug; 438(2):346-52. PubMed ID: 23896602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.