These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1981 related articles for article (PubMed ID: 28187519)
21. Sodium alginate hydrogel-based bioprinting using a novel multinozzle bioprinting system. Song SJ; Choi J; Park YD; Hong S; Lee JJ; Ahn CB; Choi H; Sun K Artif Organs; 2011 Nov; 35(11):1132-6. PubMed ID: 22097985 [TBL] [Abstract][Full Text] [Related]
22. Advanced Strategies for 3D Bioprinting of Tissue and Organ Analogs Using Alginate Hydrogel Bioinks. Gao Q; Kim BS; Gao G Mar Drugs; 2021 Dec; 19(12):. PubMed ID: 34940707 [TBL] [Abstract][Full Text] [Related]
23. Porous PVA/SA/HA hydrogels fabricated by dual-crosslinking method for bone tissue engineering. Xu M; Qin M; Zhang X; Zhang X; Li J; Hu Y; Chen W; Huang D J Biomater Sci Polym Ed; 2020 Apr; 31(6):816-831. PubMed ID: 31971484 [TBL] [Abstract][Full Text] [Related]
24. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability. Paxton N; Smolan W; Böck T; Melchels F; Groll J; Jungst T Biofabrication; 2017 Nov; 9(4):044107. PubMed ID: 28930091 [TBL] [Abstract][Full Text] [Related]
26. Alginate based hydrogel inks for 3D bioprinting of engineered orthopedic tissues. Murab S; Gupta A; Włodarczyk-Biegun MK; Kumar A; van Rijn P; Whitlock P; Han SS; Agrawal G Carbohydr Polym; 2022 Nov; 296():119964. PubMed ID: 36088004 [TBL] [Abstract][Full Text] [Related]
27. 3D Bioprinting of Complex, Cell-laden Alginate Constructs. Tabriz AG; Cornelissen DJ; Shu W Methods Mol Biol; 2021; 2147():143-148. PubMed ID: 32840817 [TBL] [Abstract][Full Text] [Related]
28. Manufacturing of self-standing multi-layered 3D-bioprinted alginate-hyaluronate constructs by controlling the cross-linking mechanisms for tissue engineering applications. Janarthanan G; Kim JH; Kim I; Lee C; Chung EJ; Noh I Biofabrication; 2022 May; 14(3):. PubMed ID: 35504259 [TBL] [Abstract][Full Text] [Related]
29. Biomimetic Mineralization of Three-Dimensional Printed Alginate/TEMPO-Oxidized Cellulose Nanofibril Scaffolds for Bone Tissue Engineering. Abouzeid RE; Khiari R; Beneventi D; Dufresne A Biomacromolecules; 2018 Nov; 19(11):4442-4452. PubMed ID: 30301348 [TBL] [Abstract][Full Text] [Related]
30. Indirect 3D bioprinting and characterization of alginate scaffolds for potential nerve tissue engineering applications. Naghieh S; Sarker MD; Abelseth E; Chen X J Mech Behav Biomed Mater; 2019 May; 93():183-193. PubMed ID: 30802775 [TBL] [Abstract][Full Text] [Related]
31. Enhanced rheological behaviors of alginate hydrogels with carrageenan for extrusion-based bioprinting. Kim MH; Lee YW; Jung WK; Oh J; Nam SY J Mech Behav Biomed Mater; 2019 Oct; 98():187-194. PubMed ID: 31252328 [TBL] [Abstract][Full Text] [Related]
32. Development of a morphogenetically active scaffold for three-dimensional growth of bone cells: biosilica-alginate hydrogel for SaOS-2 cell cultivation. Müller WE; Schröder HC; Feng Q; Schlossmacher U; Link T; Wang X J Tissue Eng Regen Med; 2015 Nov; 9(11):E39-50. PubMed ID: 23585362 [TBL] [Abstract][Full Text] [Related]
33. Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells. Neufurth M; Wang X; Schröder HC; Feng Q; Diehl-Seifert B; Ziebart T; Steffen R; Wang S; Müller WEG Biomaterials; 2014 Oct; 35(31):8810-8819. PubMed ID: 25047630 [TBL] [Abstract][Full Text] [Related]
34. Nano-/microfiber scaffold for tissue engineering: physical and biological properties. Santana BP; Paganotto GF; Nedel F; Piva E; de Carvalho RV; Nör JE; Demarco FF; Carreño NL J Biomed Mater Res A; 2012 Nov; 100(11):3051-8. PubMed ID: 22711621 [TBL] [Abstract][Full Text] [Related]
35. Fish scale containing alginate dialdehyde-gelatin bioink for bone tissue engineering. Kara Özenler A; Distler T; Tihminlioglu F; Boccaccini AR Biofabrication; 2023 Feb; 15(2):. PubMed ID: 36706451 [TBL] [Abstract][Full Text] [Related]
36. An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering. Kundu J; Shim JH; Jang J; Kim SW; Cho DW J Tissue Eng Regen Med; 2015 Nov; 9(11):1286-97. PubMed ID: 23349081 [TBL] [Abstract][Full Text] [Related]
37. Genipin-crosslinked polyvinyl alcohol/silk fibroin/nano-hydroxyapatite hydrogel for fabrication of artificial cornea scaffolds-a novel approach to corneal tissue engineering. Zhou H; Wang Z; Cao H; Hu H; Luo Z; Yang X; Cui M; Zhou L J Biomater Sci Polym Ed; 2019 Dec; 30(17):1604-1619. PubMed ID: 31438806 [TBL] [Abstract][Full Text] [Related]
38. Fabrication of chitosan/alginate/hydroxyapatite hybrid scaffolds using 3D printing and impregnating techniques for potential cartilage regeneration. Sadeghianmaryan A; Naghieh S; Yazdanpanah Z; Alizadeh Sardroud H; Sharma NK; Wilson LD; Chen X Int J Biol Macromol; 2022 Apr; 204():62-75. PubMed ID: 35124017 [TBL] [Abstract][Full Text] [Related]
39. Hydroxyapatite-doped alginate beads as scaffolds for the osteoblastic differentiation of mesenchymal stem cells. Wang MO; Bracaglia L; Thompson JA; Fisher JP J Biomed Mater Res A; 2016 Sep; 104(9):2325-33. PubMed ID: 27129735 [TBL] [Abstract][Full Text] [Related]
40. Preparation and properties of dopamine-modified alginate/chitosan-hydroxyapatite scaffolds with gradient structure for bone tissue engineering. Shi D; Shen J; Zhang Z; Shi C; Chen M; Gu Y; Liu Y J Biomed Mater Res A; 2019 Aug; 107(8):1615-1627. PubMed ID: 30920134 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]