BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 28187704)

  • 1. The nucleotide composition of microbial genomes indicates differential patterns of selection on core and accessory genomes.
    Bohlin J; Eldholm V; Pettersson JH; Brynildsrud O; Snipen L
    BMC Genomics; 2017 Feb; 18(1):151. PubMed ID: 28187704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amino acid usage is asymmetrically biased in AT- and GC-rich microbial genomes.
    Bohlin J; Brynildsrud O; Vesth T; Skjerve E; Ussery DW
    PLoS One; 2013; 8(7):e69878. PubMed ID: 23922837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of the GC content of the substituted bases in bacterial core genomes.
    Bohlin J; Eldholm V; Brynildsrud O; Petterson JH; Alfsnes K
    BMC Genomics; 2018 Aug; 19(1):589. PubMed ID: 30081825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcription-related mutations and GC content drive variation in nucleotide substitution rates across the genomes of Arabidopsis thaliana and Arabidopsis lyrata.
    DeRose-Wilson LJ; Gaut BS
    BMC Evol Biol; 2007 Apr; 7():66. PubMed ID: 17451608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constraint on di-nucleotides by codon usage bias in bacterial genomes.
    Satapathy SS; Powdel BR; Dutta M; Buragohain AK; Ray SK
    Gene; 2014 Feb; 536(1):18-28. PubMed ID: 24333347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vertebrate codon bias indicates a highly GC-rich ancestral genome.
    Nabiyouni M; Prakash A; Fedorov A
    Gene; 2013 Apr; 519(1):113-9. PubMed ID: 23376453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the core and accessory genomes of Pseudomonas aeruginosa using bioinformatic tools Spine and AGEnt.
    Ozer EA; Allen JP; Hauser AR
    BMC Genomics; 2014 Aug; 15(1):737. PubMed ID: 25168460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlations between nucleotide frequencies and amino acid composition in 115 bacterial species.
    Bharanidharan D; Bhargavi GR; Uthanumallian K; Gautham N
    Biochem Biophys Res Commun; 2004 Mar; 315(4):1097-103. PubMed ID: 14985126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GC-biased gene conversion and selection affect GC content in the Oryza genus (rice).
    Muyle A; Serres-Giardi L; Ressayre A; Escobar J; Glémin S
    Mol Biol Evol; 2011 Sep; 28(9):2695-706. PubMed ID: 21504892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutation exposed: a neutral explanation for extreme base composition of an endosymbiont genome.
    Wernegreen JJ; Funk DJ
    J Mol Evol; 2004 Dec; 59(6):849-58. PubMed ID: 15599516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GC content evolution in coding regions of angiosperm genomes: a unifying hypothesis.
    Glémin S; Clément Y; David J; Ressayre A
    Trends Genet; 2014 Jul; 30(7):263-70. PubMed ID: 24916172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective forces and mutational biases drive stop codon usage in the human genome: a comparison with sense codon usage.
    Trotta E
    BMC Genomics; 2016 May; 17():366. PubMed ID: 27188984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GC-Content evolution in bacterial genomes: the biased gene conversion hypothesis expands.
    Lassalle F; Périan S; Bataillon T; Nesme X; Duret L; Daubin V
    PLoS Genet; 2015 Feb; 11(2):e1004941. PubMed ID: 25659072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence space coverage, entropy of genomes and the potential to detect non-human DNA in human samples.
    Liu Z; Venkatesh SS; Maley CC
    BMC Genomics; 2008 Oct; 9():509. PubMed ID: 18973670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Frequency of Internal Shine-Dalgarno-like Motifs in Prokaryotes.
    Diwan GD; Agashe D
    Genome Biol Evol; 2016 Jun; 8(6):1722-33. PubMed ID: 27189998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simple sequence repeats in different genome sequences of Shigella and comparison with high GC and AT-rich genomes.
    Hosseini A; Ranade SH; Ghosh I; Khandekar P
    DNA Seq; 2008 Jun; 19(3):167-76. PubMed ID: 18464038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigations of oligonucleotide usage variance within and between prokaryotes.
    Bohlin J; Skjerve E; Ussery DW
    PLoS Comput Biol; 2008 Apr; 4(4):e1000057. PubMed ID: 18421372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An evolution model for sequence length based on residue insertion-deletion independent of substitution: an application to the GC content in bacterial genomes.
    Lèbre S; Michel CJ
    Bull Math Biol; 2012 Aug; 74(8):1764-88. PubMed ID: 22644340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Introns Structure Patterns of Variation in Nucleotide Composition in Arabidopsis thaliana and Rice Protein-Coding Genes.
    Ressayre A; Glémin S; Montalent P; Serre-Giardi L; Dillmann C; Joets J
    Genome Biol Evol; 2015 Oct; 7(10):2913-28. PubMed ID: 26450849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of base composition in the insulin and insulin-like growth factor genes.
    Ellsworth DL; Hewett-Emmett D; Li WH
    Mol Biol Evol; 1994 Nov; 11(6):875-85. PubMed ID: 7815927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.