BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

798 related articles for article (PubMed ID: 28187708)

  • 1. Incorporating prior biological knowledge for network-based differential gene expression analysis using differentially weighted graphical LASSO.
    Zuo Y; Cui Y; Yu G; Li R; Ressom HW
    BMC Bioinformatics; 2017 Feb; 18(1):99. PubMed ID: 28187708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. INDEED: Integrated differential expression and differential network analysis of omic data for biomarker discovery.
    Zuo Y; Cui Y; Di Poto C; Varghese RS; Yu G; Li R; Ressom HW
    Methods; 2016 Dec; 111():12-20. PubMed ID: 27592383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene Network Reconstruction by Integration of Prior Biological Knowledge.
    Li Y; Jackson SA
    G3 (Bethesda); 2015 Mar; 5(6):1075-9. PubMed ID: 25823587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feature selection with the Fisher score followed by the Maximal Clique Centrality algorithm can accurately identify the hub genes of hepatocellular carcinoma.
    Li C; Xu J
    Sci Rep; 2019 Nov; 9(1):17283. PubMed ID: 31754223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Weighted lasso in graphical Gaussian modeling for large gene network estimation based on microarray data.
    Shimamura T; Imoto S; Yamaguchi R; Miyano S
    Genome Inform; 2007; 19():142-53. PubMed ID: 18546512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of biomarkers for Barcelona Clinic Liver Cancer staging and overall survival of patients with hepatocellular carcinoma.
    Xu W; Rao Q; An Y; Li M; Zhang Z
    PLoS One; 2018; 13(8):e0202763. PubMed ID: 30138346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Node-based learning of differential networks from multi-platform gene expression data.
    Ou-Yang L; Zhang XF; Wu M; Li XL
    Methods; 2017 Oct; 129():41-49. PubMed ID: 28579401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Network-based inference framework for identifying cancer genes from gene expression data.
    Yang B; Zhang J; Yin Y; Zhang Y
    Biomed Res Int; 2013; 2013():401649. PubMed ID: 24073403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Condition-adaptive fused graphical lasso (CFGL): An adaptive procedure for inferring condition-specific gene co-expression network.
    Lyu Y; Xue L; Zhang F; Koch H; Saba L; Kechris K; Li Q
    PLoS Comput Biol; 2018 Sep; 14(9):e1006436. PubMed ID: 30240439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tailored graphical lasso for data integration in gene network reconstruction.
    Lingjærde C; Lien TG; Borgan Ø; Bergholtz H; Glad IK
    BMC Bioinformatics; 2021 Oct; 22(1):498. PubMed ID: 34654363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inference of radio-responsive gene regulatory networks using the graphical lasso algorithm.
    Oh JH; Deasy JO
    BMC Bioinformatics; 2014; 15 Suppl 7(Suppl 7):S5. PubMed ID: 25077716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Meta-analysis of gene expression profiles identifies differential biomarkers for hepatocellular carcinoma and cholangiocarcinoma.
    Likhitrattanapisal S; Tipanee J; Janvilisri T
    Tumour Biol; 2016 Sep; 37(9):12755-12766. PubMed ID: 27448818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-Wide Analysis of Prognostic lncRNAs, miRNAs, and mRNAs Forming a Competing Endogenous RNA Network in Hepatocellular Carcinoma.
    Lin P; Wen DY; Li Q; He Y; Yang H; Chen G
    Cell Physiol Biochem; 2018; 48(5):1953-1967. PubMed ID: 30092571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Five Core Genes Related to the Progression and Prognosis of Hepatocellular Carcinoma Identified by Analysis of a Coexpression Network.
    Kong J; Wang T; Zhang Z; Yang X; Shen S; Wang W
    DNA Cell Biol; 2019 Dec; 38(12):1564-1576. PubMed ID: 31633379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Augmented High-Dimensional Graphical Lasso Method to Incorporate Prior Biological Knowledge for Global Network Learning.
    Zhuang Y; Xing F; Ghosh D; Banaei-Kashani F; Bowler RP; Kechris K
    Front Genet; 2021; 12():760299. PubMed ID: 35154240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust edge-based biomarker discovery improves prediction of breast cancer metastasis.
    Adnan N; Lei C; Ruan J
    BMC Bioinformatics; 2020 Sep; 21(Suppl 14):359. PubMed ID: 32998692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential role of microRNA‑223‑3p in the tumorigenesis of hepatocellular carcinoma: A comprehensive study based on data mining and bioinformatics.
    Zhang R; Zhang LJ; Yang ML; Huang LS; Chen G; Feng ZB
    Mol Med Rep; 2018 Feb; 17(2):2211-2228. PubMed ID: 29207133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Importance-Penalized Joint Graphical Lasso (IPJGL): differential network inference via GGMs.
    Leng J; Wu LY
    Bioinformatics; 2022 Jan; 38(3):770-777. PubMed ID: 34718410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An empirical Bayes approach to inferring large-scale gene association networks.
    Schäfer J; Strimmer K
    Bioinformatics; 2005 Mar; 21(6):754-64. PubMed ID: 15479708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hierarchical poisson log-normal model for network inference from RNA sequencing data.
    Gallopin M; Rau A; Jaffrézic F
    PLoS One; 2013; 8(10):e77503. PubMed ID: 24147011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.