BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1070 related articles for article (PubMed ID: 28188217)

  • 1. Hebbian Spike-Timing Dependent Plasticity at the Cerebellar Input Stage.
    Sgritta M; Locatelli F; Soda T; Prestori F; D'Angelo EU
    J Neurosci; 2017 Mar; 37(11):2809-2823. PubMed ID: 28188217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LTP regulates burst initiation and frequency at mossy fiber-granule cell synapses of rat cerebellum: experimental observations and theoretical predictions.
    Nieus T; Sola E; Mapelli J; Saftenku E; Rossi P; D'Angelo E
    J Neurophysiol; 2006 Feb; 95(2):686-99. PubMed ID: 16207782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Requirement of dendritic calcium spikes for induction of spike-timing-dependent synaptic plasticity.
    Kampa BM; Letzkus JJ; Stuart GJ
    J Physiol; 2006 Jul; 574(Pt 1):283-90. PubMed ID: 16675489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dopamine receptor activation is required for corticostriatal spike-timing-dependent plasticity.
    Pawlak V; Kerr JN
    J Neurosci; 2008 Mar; 28(10):2435-46. PubMed ID: 18322089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium Channel-Dependent Induction of Long-Term Synaptic Plasticity at Excitatory Golgi Cell Synapses of Cerebellum.
    Locatelli F; Soda T; Montagna I; Tritto S; Botta L; Prestori F; D'Angelo E
    J Neurosci; 2021 Apr; 41(15):3307-3319. PubMed ID: 33500277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-Term Potentiation at the Mossy Fiber-Granule Cell Relay Invokes Postsynaptic Second-Messenger Regulation of Kv4 Channels.
    Rizwan AP; Zhan X; Zamponi GW; Turner RW
    J Neurosci; 2016 Nov; 36(44):11196-11207. PubMed ID: 27807163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning rules for spike timing-dependent plasticity depend on dendritic synapse location.
    Letzkus JJ; Kampa BM; Stuart GJ
    J Neurosci; 2006 Oct; 26(41):10420-9. PubMed ID: 17035526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Presynaptic Spike Timing-Dependent Long-Term Depression in the Mouse Hippocampus.
    Andrade-Talavera Y; Duque-Feria P; Paulsen O; Rodríguez-Moreno A
    Cereb Cortex; 2016 Aug; 26(8):3637-3654. PubMed ID: 27282393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spike-timing-dependent plasticity in hippocampal CA3 neurons.
    Astori S; Pawlak V; Köhr G
    J Physiol; 2010 Nov; 588(Pt 22):4475-88. PubMed ID: 20876200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental Switch in Spike Timing-Dependent Plasticity and Cannabinoid-Dependent Reorganization of the Thalamocortical Projection in the Barrel Cortex.
    Itami C; Huang JY; Yamasaki M; Watanabe M; Lu HC; Kimura F
    J Neurosci; 2016 Jun; 36(26):7039-54. PubMed ID: 27358460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dopamine-enabled anti-Hebbian timing-dependent plasticity in prefrontal circuitry.
    Ruan H; Saur T; Yao WD
    Front Neural Circuits; 2014; 8():38. PubMed ID: 24795571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spike timing-dependent plasticity: a learning rule for dendritic integration in rat CA1 pyramidal neurons.
    Campanac E; Debanne D
    J Physiol; 2008 Feb; 586(3):779-93. PubMed ID: 18048448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term potentiation of intrinsic excitability at the mossy fiber-granule cell synapse of rat cerebellum.
    Armano S; Rossi P; Taglietti V; D'Angelo E
    J Neurosci; 2000 Jul; 20(14):5208-16. PubMed ID: 10884304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential induction of bidirectional long-term changes in neurotransmitter release by frequency-coded patterns at the cerebellar input.
    D'Errico A; Prestori F; D'Angelo E
    J Physiol; 2009 Dec; 587(Pt 24):5843-57. PubMed ID: 19858226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of synaptic plasticity by the coactivation of spatially distinct synaptic inputs in rat hippocampal CA1 apical dendrites.
    Kondo M; Kitajima T; Fujii S; Tsukada M; Aihara T
    Brain Res; 2013 Aug; 1526():1-14. PubMed ID: 23711890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracellular calcium regulation by burst discharge determines bidirectional long-term synaptic plasticity at the cerebellum input stage.
    Gall D; Prestori F; Sola E; D'Errico A; Roussel C; Forti L; Rossi P; D'Angelo E
    J Neurosci; 2005 May; 25(19):4813-22. PubMed ID: 15888657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cholinergic modulation on spike timing-dependent plasticity in hippocampal CA1 network.
    Sugisaki E; Fukushima Y; Tsukada M; Aihara T
    Neuroscience; 2011 Sep; 192():91-101. PubMed ID: 21736924
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for NMDA and mGlu receptor-dependent long-term potentiation of mossy fiber-granule cell transmission in rat cerebellum.
    D'Angelo E; Rossi P; Armano S; Taglietti V
    J Neurophysiol; 1999 Jan; 81(1):277-87. PubMed ID: 9914288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. At immature mossy-fiber-CA3 synapses, correlated presynaptic and postsynaptic activity persistently enhances GABA release and network excitability via BDNF and cAMP-dependent PKA.
    Sivakumaran S; Mohajerani MH; Cherubini E
    J Neurosci; 2009 Feb; 29(8):2637-47. PubMed ID: 19244539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Voltage-Based STDP Rule Combined with Fast BCM-Like Metaplasticity Accounts for LTP and Concurrent "Heterosynaptic" LTD in the Dentate Gyrus In Vivo.
    Jedlicka P; Benuskova L; Abraham WC
    PLoS Comput Biol; 2015 Nov; 11(11):e1004588. PubMed ID: 26544038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 54.