These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
300 related articles for article (PubMed ID: 28188274)
1. Spatial and Temporal Mapping of Key Lipid Species in Woodfield HK; Sturtevant D; Borisjuk L; Munz E; Guschina IA; Chapman K; Harwood JL Plant Physiol; 2017 Apr; 173(4):1998-2009. PubMed ID: 28188274 [TBL] [Abstract][Full Text] [Related]
2. Spatial analysis of lipid metabolites and expressed genes reveals tissue-specific heterogeneity of lipid metabolism in high- and low-oil Brassica napus L. seeds. Lu S; Sturtevant D; Aziz M; Jin C; Li Q; Chapman KD; Guo L Plant J; 2018 Jun; 94(6):915-932. PubMed ID: 29752761 [TBL] [Abstract][Full Text] [Related]
3. Coordinate changes in gene expression and triacylglycerol composition in the developing seeds of oilseed rape (Brassica napus) and turnip rape (Brassica rapa). Vuorinen AL; Kalpio M; Linderborg KM; Kortesniemi M; Lehto K; Niemi J; Yang B; Kallio HP Food Chem; 2014 Feb; 145():664-73. PubMed ID: 24128529 [TBL] [Abstract][Full Text] [Related]
4. Three-dimensional visualization of membrane phospholipid distributions in Arabidopsis thaliana seeds: A spatial perspective of molecular heterogeneity. Sturtevant D; Dueñas ME; Lee YJ; Chapman KD Biochim Biophys Acta Mol Cell Biol Lipids; 2017 Feb; 1862(2):268-281. PubMed ID: 27919665 [TBL] [Abstract][Full Text] [Related]
5. Modified oleic cottonseeds show altered content, composition and tissue-specific distribution of triacylglycerol molecular species. Horn PJ; Sturtevant D; Chapman KD Biochimie; 2014 Jan; 96():28-36. PubMed ID: 23973433 [TBL] [Abstract][Full Text] [Related]
6. Imaging heterogeneity of membrane and storage lipids in transgenic Camelina sativa seeds with altered fatty acid profiles. Horn PJ; Silva JE; Anderson D; Fuchs J; Borisjuk L; Nazarenus TJ; Shulaev V; Cahoon EB; Chapman KD Plant J; 2013 Oct; 76(1):138-50. PubMed ID: 23808562 [TBL] [Abstract][Full Text] [Related]
7. Type 1 diacylglycerol acyltransferases of Brassica napus preferentially incorporate oleic acid into triacylglycerol. Aznar-Moreno J; Denolf P; Van Audenhove K; De Bodt S; Engelen S; Fahy D; Wallis JG; Browse J J Exp Bot; 2015 Oct; 66(20):6497-506. PubMed ID: 26195728 [TBL] [Abstract][Full Text] [Related]
8. Two Acyltransferases Contribute Differently to Linolenic Acid Levels in Seed Oil. Marmon S; Sturtevant D; Herrfurth C; Chapman K; Stymne S; Feussner I Plant Physiol; 2017 Apr; 173(4):2081-2095. PubMed ID: 28235891 [TBL] [Abstract][Full Text] [Related]
9. Using lipidomics to reveal details of lipid accumulation in developing seeds from oilseed rape (Brassica napus L.). Woodfield HK; Cazenave-Gassiot A; Haslam RP; Guschina IA; Wenk MR; Harwood JL Biochim Biophys Acta Mol Cell Biol Lipids; 2018 Mar; 1863(3):339-348. PubMed ID: 29275220 [TBL] [Abstract][Full Text] [Related]
10. Correlation analysis of the transcriptome and metabolome reveals the regulatory network for lipid synthesis in developing Brassica napus embryos. Tan H; Zhang J; Qi X; Shi X; Zhou J; Wang X; Xiang X Plant Mol Biol; 2019 Jan; 99(1-2):31-44. PubMed ID: 30519824 [TBL] [Abstract][Full Text] [Related]
11. Overexpression of phospholipid: diacylglycerol acyltransferase in Brassica napus results in changes in lipid metabolism and oil accumulation. Fenyk S; Woodfield HK; Romsdahl TB; Wallington EJ; Bates RE; Fell DA; Chapman KD; Fawcett T; Harwood JL Biochem J; 2022 Mar; 479(6):805-823. PubMed ID: 35298586 [TBL] [Abstract][Full Text] [Related]
12. Fatty acid distribution and lipid metabolism in developing seeds of laurate-producing rape (Brassica napus L.). Wiberg E; Banas A; Stymne S Planta; 1997; 203(3):341-8. PubMed ID: 9431681 [TBL] [Abstract][Full Text] [Related]
13. Comparative Transcriptome Analysis of Developing Seeds and Silique Wall Reveals Dynamic Transcription Networks for Effective Oil Production in Shahid M; Cai G; Zu F; Zhao Q; Qasim MU; Hong Y; Fan C; Zhou Y Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31018533 [TBL] [Abstract][Full Text] [Related]
14. Metabolic control analysis of developing oilseed rape (Brassica napus cv Westar) embryos shows that lipid assembly exerts significant control over oil accumulation. Tang M; Guschina IA; O'Hara P; Slabas AR; Quant PA; Fawcett T; Harwood JL New Phytol; 2012 Oct; 196(2):414-426. PubMed ID: 22901003 [TBL] [Abstract][Full Text] [Related]
15. Enhanced seed oil content by overexpressing genes related to triacylglyceride synthesis. Liu F; Xia Y; Wu L; Fu D; Hayward A; Luo J; Yan X; Xiong X; Fu P; Wu G; Lu C Gene; 2015 Feb; 557(2):163-71. PubMed ID: 25523093 [TBL] [Abstract][Full Text] [Related]
16. Dynamic Metabolic Profiles and Tissue-Specific Source Effects on the Metabolome of Developing Seeds of Brassica napus. Tan H; Xie Q; Xiang X; Li J; Zheng S; Xu X; Guo H; Ye W PLoS One; 2015; 10(4):e0124794. PubMed ID: 25919591 [TBL] [Abstract][Full Text] [Related]
17. Embryo-specific reduction of ADP-Glc pyrophosphorylase leads to an inhibition of starch synthesis and a delay in oil accumulation in developing seeds of oilseed rape. Vigeolas H; Möhlmann T; Martini N; Neuhaus HE; Geigenberger P Plant Physiol; 2004 Sep; 136(1):2676-86. PubMed ID: 15333758 [TBL] [Abstract][Full Text] [Related]
18. Suppression of the SUGAR-DEPENDENT1 triacylglycerol lipase family during seed development enhances oil yield in oilseed rape (Brassica napus L.). Kelly AA; Shaw E; Powers SJ; Kurup S; Eastmond PJ Plant Biotechnol J; 2013 Apr; 11(3):355-61. PubMed ID: 23171303 [TBL] [Abstract][Full Text] [Related]
19. Quantitative Multilevel Analysis of Central Metabolism in Developing Oilseeds of Oilseed Rape during in Vitro Culture. Schwender J; Hebbelmann I; Heinzel N; Hildebrandt T; Rogers A; Naik D; Klapperstück M; Braun HP; Schreiber F; Denolf P; Borisjuk L; Rolletschek H Plant Physiol; 2015 Jul; 168(3):828-48. PubMed ID: 25944824 [TBL] [Abstract][Full Text] [Related]
20. Transcriptome profiling analysis reveals the role of silique in controlling seed oil content in Brassica napus. Huang KL; Zhang ML; Ma GJ; Wu H; Wu XM; Ren F; Li XB PLoS One; 2017; 12(6):e0179027. PubMed ID: 28594951 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]