BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 28188295)

  • 1. Myroilysin Is a New Bacterial Member of the M12A Family of Metzincin Metallopeptidases and Is Activated by a Cysteine Switch Mechanism.
    Xu D; Zhou J; Lou X; He J; Ran T; Wang W
    J Biol Chem; 2017 Mar; 292(13):5195-5206. PubMed ID: 28188295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of mature myroilysin and implication for its activation mechanism.
    Ran T; Li W; Sun B; Xu M; Qiu S; Xu DQ; He J; Wang W
    Int J Biol Macromol; 2020 Aug; 156():1556-1564. PubMed ID: 31785296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ecological function of myroilysin, a novel bacterial M12 metalloprotease with elastinolytic activity and a synergistic role in collagen hydrolysis, in biodegradation of deep-sea high-molecular-weight organic nitrogen.
    Chen XL; Xie BB; Bian F; Zhao GY; Zhao HL; He HL; Zhou BC; Zhang YZ
    Appl Environ Microbiol; 2009 Apr; 75(7):1838-44. PubMed ID: 19201976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic insight into the elastin degradation process by the metalloprotease myroilysin from the deep-sea bacterium Myroides profundi D25.
    Yang J; Zhao HL; Tang BL; Chen XL; Su HN; Zhang XY; Song XY; Zhou BC; Xie BB; Weiss AS; Zhang YZ
    Mar Drugs; 2015 Mar; 13(3):1481-96. PubMed ID: 25793427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural aspects of the metzincin clan of metalloendopeptidases.
    Gomis-Rüth FX
    Mol Biotechnol; 2003 Jun; 24(2):157-202. PubMed ID: 12746556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional and structural insights into astacin metallopeptidases.
    Gomis-Rüth FX; Trillo-Muyo S; Stöcker W
    Biol Chem; 2012 Oct; 393(10):1027-41. PubMed ID: 23092796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proenzyme structure and activation of astacin metallopeptidase.
    Guevara T; Yiallouros I; Kappelhoff R; Bissdorf S; Stöcker W; Gomis-Rüth FX
    J Biol Chem; 2010 Apr; 285(18):13958-65. PubMed ID: 20202938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Culture Condition Optimization and Pilot Scale Production of the M12 Metalloprotease Myroilysin Produced by the Deep-Sea Bacterium Myroides profundi D25.
    Shao X; Ran LY; Liu C; Chen XL; Zhang XY; Qin QL; Zhou BC; Zhang YZ
    Molecules; 2015 Jun; 20(7):11891-901. PubMed ID: 26132910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zymogenic latency in an ∼250-million-year-old astacin metallopeptidase.
    Guevara T; Rodríguez-Banqueri A; Stöcker W; Becker-Pauly C; Gomis-Rüth FX
    Acta Crystallogr D Struct Biol; 2022 Nov; 78(Pt 11):1347-1357. PubMed ID: 36322418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metzincin's canonical methionine is responsible for the structural integrity of the zinc-binding site.
    Oberholzer AE; Bumann M; Hege T; Russo S; Baumann U
    Biol Chem; 2009 Sep; 390(9):875-81. PubMed ID: 19558324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis for the substrate specificity of bone morphogenetic protein 1/tolloid-like metalloproteases.
    Mac Sweeney A; Gil-Parrado S; Vinzenz D; Bernardi A; Hein A; Bodendorf U; Erbel P; Logel C; Gerhartz B
    J Mol Biol; 2008 Dec; 384(1):228-39. PubMed ID: 18824173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of a site-2 protease family intramembrane metalloprotease.
    Feng L; Yan H; Wu Z; Yan N; Wang Z; Jeffrey PD; Shi Y
    Science; 2007 Dec; 318(5856):1608-12. PubMed ID: 18063795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new subclass of the zinc metalloproteases superfamily revealed by the solution structure of peptide deformylase.
    Meinnel T; Blanquet S; Dardel F
    J Mol Biol; 1996 Sep; 262(3):375-86. PubMed ID: 8845003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-based mechanism of cysteine-switch latency and of catalysis by pappalysin-family metallopeptidases.
    Guevara T; Rodriguez-Banqueri A; Ksiazek M; Potempa J; Gomis-Rüth FX
    IUCrJ; 2020 Jan; 7(Pt 1):18-29. PubMed ID: 31949901
    [No Abstract]   [Full Text] [Related]  

  • 15. Molecular analysis of ulilysin, the structural prototype of a new family of metzincin metalloproteases.
    Tallant C; García-Castellanos R; Seco J; Baumann U; Gomis-Rüth FX
    J Biol Chem; 2006 Jun; 281(26):17920-8. PubMed ID: 16627477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family.
    Van Wart HE; Birkedal-Hansen H
    Proc Natl Acad Sci U S A; 1990 Jul; 87(14):5578-82. PubMed ID: 2164689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Matrix metalloproteinases: fold and function of their catalytic domains.
    Tallant C; Marrero A; Gomis-Rüth FX
    Biochim Biophys Acta; 2010 Jan; 1803(1):20-8. PubMed ID: 19374923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation Mechanism of the Bacteroides fragilis Cysteine Peptidase, Fragipain.
    Herrou J; Choi VM; Bubeck Wardenburg J; Crosson S
    Biochemistry; 2016 Jul; 55(29):4077-84. PubMed ID: 27379832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structures of acutolysin A, a three-disulfide hemorrhagic zinc metalloproteinase from the snake venom of Agkistrodon acutus.
    Gong W; Zhu X; Liu S; Teng M; Niu L
    J Mol Biol; 1998 Oct; 283(3):657-68. PubMed ID: 9784374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of snake venom metalloproteinases by a cysteine switch-like mechanism.
    Grams F; Huber R; Kress LF; Moroder L; Bode W
    FEBS Lett; 1993 Nov; 335(1):76-80. PubMed ID: 8243670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.