BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 28188525)

  • 21. Isotope-labeling and affinity enrichment of phosphopeptides for proteomic analysis using liquid chromatography-tandem mass spectrometry.
    Kota U; Chien KY; Goshe MB
    Methods Mol Biol; 2009; 564():303-21. PubMed ID: 19544030
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sequential Phosphopeptide Enrichment for Phosphoproteome Analysis of Filamentous Fungi: A Test Case Using Magnaporthe oryzae.
    Oh Y; Franck WL; Dean RA
    Methods Mol Biol; 2018; 1848():81-91. PubMed ID: 30182230
    [TBL] [Abstract][Full Text] [Related]  

  • 23. TMT One-Stop Shop: From Reliable Sample Preparation to Computational Analysis Platform.
    Mirzaei M; Pascovici D; Wu JX; Chick J; Wu Y; Cooke B; Haynes P; Molloy MP
    Methods Mol Biol; 2017; 1549():45-66. PubMed ID: 27975283
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improving the Phosphoproteome Coverage for Limited Sample Amounts Using TiO2-SIMAC-HILIC (TiSH) Phosphopeptide Enrichment and Fractionation.
    Engholm-Keller K; Larsen MR
    Methods Mol Biol; 2016; 1355():161-77. PubMed ID: 26584925
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combination of FASP and StageTip-based fractionation allows in-depth analysis of the hippocampal membrane proteome.
    Wiśniewski JR; Zougman A; Mann M
    J Proteome Res; 2009 Dec; 8(12):5674-8. PubMed ID: 19848406
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phosphoproteome Analysis in Immune Cell Signaling.
    Rathore D; Nita-Lazar A
    Curr Protoc Immunol; 2020 Sep; 130(1):e105. PubMed ID: 32936995
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3D-SISPROT: A simple and integrated spintip-based protein digestion and three-dimensional peptide fractionation technology for deep proteome profiling.
    Chen W; Adhikari S; Chen L; Lin L; Li H; Luo S; Yang P; Tian R
    J Chromatogr A; 2017 May; 1498():207-214. PubMed ID: 28126229
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Proteomic analysis of mouse astrocytes and their secretome by a combination of FASP and StageTip-based, high pH, reversed-phase fractionation.
    Han D; Jin J; Woo J; Min H; Kim Y
    Proteomics; 2014 Jul; 14(13-14):1604-9. PubMed ID: 24753479
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lys-C/Trypsin Tandem-Digestion Protocol for Gel-Free Proteomic Analysis of Colon Biopsies.
    Schniers A; Pasing Y; Hansen T
    Methods Mol Biol; 2019; 1959():113-122. PubMed ID: 30852818
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An off-line high pH reversed-phase fractionation and nano-liquid chromatography-mass spectrometry method for global proteomic profiling of cell lines.
    Wang H; Sun S; Zhang Y; Chen S; Liu P; Liu B
    J Chromatogr B Analyt Technol Biomed Life Sci; 2015 Jan; 974():90-5. PubMed ID: 25463202
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reversed-phase-reversed-phase liquid chromatography approach with high orthogonality for multidimensional separation of phosphopeptides.
    Song C; Ye M; Han G; Jiang X; Wang F; Yu Z; Chen R; Zou H
    Anal Chem; 2010 Jan; 82(1):53-6. PubMed ID: 19950968
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiplexed quantitative phosphoproteomics of cell line and tissue samples.
    Kreuzer J; Edwards A; Haas W
    Methods Enzymol; 2019; 626():41-65. PubMed ID: 31606085
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tandem Mass Tag-Based Phosphoproteomics in Plants.
    Vélez-Bermúdez IC; Jain D; Ravindran A; Chen CW; Hsu CC; Schmidt W
    Methods Mol Biol; 2023; 2581():309-319. PubMed ID: 36413327
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Relative Protein Quantification Using Tandem Mass Tag Mass Spectrometry.
    Zhang L; Elias JE
    Methods Mol Biol; 2017; 1550():185-198. PubMed ID: 28188531
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Global analysis of protein phosphorylation networks in insulin signaling by sequential enrichment of phosphoproteins and phosphopeptides.
    Fedjaev M; Parmar A; Xu Y; Vyetrogon K; Difalco MR; Ashmarina M; Nifant'ev I; Posner BI; Pshezhetsky AV
    Mol Biosyst; 2012 Apr; 8(5):1461-71. PubMed ID: 22362066
    [TBL] [Abstract][Full Text] [Related]  

  • 36. FractionOptimizer: a method for optimal peptide fractionation in bottom-up proteomics.
    Solovyeva EM; Lobas AA; Kopylov AT; Ilina IY; Levitsky LI; Moshkovskii SA; Gorshkov MV
    Anal Bioanal Chem; 2018 Jun; 410(16):3827-3833. PubMed ID: 29663059
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification and quantitation of signal molecule-dependent protein phosphorylation.
    Groen A; Thomas L; Lilley K; Marondedze C
    Methods Mol Biol; 2013; 1016():121-37. PubMed ID: 23681576
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Performance Evaluation of the Q Exactive HF-X for Shotgun Proteomics.
    Kelstrup CD; Bekker-Jensen DB; Arrey TN; Hogrebe A; Harder A; Olsen JV
    J Proteome Res; 2018 Jan; 17(1):727-738. PubMed ID: 29183128
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tandem Mass Tag Labeling Facilitates Reversed-Phase Liquid Chromatography-Mass Spectrometry Analysis of Hydrophilic Phosphopeptides.
    Tsai CF; Smith JS; Krajewski K; Zhao R; Moghieb AM; Nicora CD; Xiong X; Moore RJ; Liu T; Smith RD; Jacobs JM; Rajagopal S; Shi T
    Anal Chem; 2019 Sep; 91(18):11606-11613. PubMed ID: 31418558
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phosphopeptides enrichment using on-line two-dimensional strong cation exchange followed by reversed-phase liquid chromatography/mass spectrometry.
    Lim KB; Kassel DB
    Anal Biochem; 2006 Jul; 354(2):213-9. PubMed ID: 16750159
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.