These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 28188642)

  • 1. Engineering of Ruthenium(II) Photosensitizers with Non-Innocent Oxyquinolate and Carboxyamidoquinolate Ligands for Dye-Sensitized Solar Cells.
    Ngo KT; Lee NA; Pinnace SD; Rochford J
    Chemistry; 2017 Jun; 23(31):7497-7507. PubMed ID: 28188642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the Noninnocent π-Bonding Influence of N-Carboxyamidoquinolate Ligands on the Light Harvesting and Redox Properties of Ruthenium Polypyridyl Complexes.
    Ngo KT; Lee NA; Pinnace SD; Szalda DJ; Weber RT; Rochford J
    Inorg Chem; 2016 Mar; 55(5):2460-72. PubMed ID: 26886292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the noninnocent character of electron rich π-extended 8-oxyquinolate ligands in ruthenium(II) bipyridyl complexes.
    Bellinger-Buckley S; Chang TC; Bag S; Schweinfurth D; Zhou W; Torok B; Sarkar B; Tsai MK; Rochford J
    Inorg Chem; 2014 Jun; 53(11):5556-67. PubMed ID: 24840779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of a ruthenium oxyquinolate architecture for dye-sensitized solar cells.
    Zhao HC; Harney JP; Huang YT; Yum JH; Nazeeruddin MK; Grätzel M; Tsai MK; Rochford J
    Inorg Chem; 2012 Jan; 51(1):1-3. PubMed ID: 22128820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and electronic study of iron-based dye sensitizers for solar cells using DFT/TDDFT.
    Bourouina A; Rekhis M
    J Mol Model; 2017 Oct; 23(11):310. PubMed ID: 29022105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells.
    Imahori H; Umeyama T; Ito S
    Acc Chem Res; 2009 Nov; 42(11):1809-18. PubMed ID: 19408942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the potential of iron to replace ruthenium in photosensitizers: a computational study.
    Malladi S; Yarasi S; Sastry GN
    J Mol Model; 2018 Nov; 24(12):341. PubMed ID: 30460519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A DFT study on structures, frontier molecular orbitals and UV-vis spectra of RuX(PPh3)(NHCPh2)L (X=Tp and Cp; L=Cl and N3).
    Wang TH; Wang IT; Huang WL; Huang LY
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():650-6. PubMed ID: 24366160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cycloruthenated sensitizers: improving the dye-sensitized solar cell with classical inorganic chemistry principles.
    Robson KC; Bomben PG; Berlinguette CP
    Dalton Trans; 2012 Jul; 41(26):7814-29. PubMed ID: 22643695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron-rich heteroaromatic conjugated polypyridine ruthenium sensitizers for dye-sensitized solar cells.
    Abbotto A; Manfredi N
    Dalton Trans; 2011 Dec; 40(46):12421-38. PubMed ID: 21833401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Red electroluminescence of ruthenium sensitizer functionalized by sulfonate anchoring groups.
    Shahroosvand H; Abbasi P; Mohajerani E; Janghouri M
    Dalton Trans; 2014 Jun; 43(24):9202-15. PubMed ID: 24818219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA Photocleavage by Non-innocent Ligand-Based Ru(II) Complexes.
    Zhang Y; Zhou Q; Zheng Y; Li K; Jiang G; Hou Y; Zhang B; Wang X
    Inorg Chem; 2016 May; 55(9):4296-300. PubMed ID: 27101335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel heteroleptic ruthenium (II) complex with DPBPZ derivative for dye-sensitized solar cells.
    Chang DM; Kim YS
    J Nanosci Nanotechnol; 2012 Jul; 12(7):5709-12. PubMed ID: 22966639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast interfacial charge transfer from the LUMO+1 in ruthenium(ii) polypyridyl quinoxaline-sensitized solar cells.
    Shahroosvand H; Eskandari M
    Dalton Trans; 2018 Jan; 47(2):561-576. PubMed ID: 29239438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A heteroleptic bis(tridentate) ruthenium(II) platform featuring an anionic 1,2,3-triazolate-based ligand for application in the dye-sensitized solar cell.
    Sinn S; Schulze B; Friebe C; Brown DG; Jäger M; Kübel J; Dietzek B; Berlinguette CP; Schubert US
    Inorg Chem; 2014 Feb; 53(3):1637-45. PubMed ID: 24446676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structures, spectroscopic properties and redox potentials of quaterpyridyl Ru(II) photosensitizer and its derivatives for solar energy cell: a density functional study.
    Pan QJ; Guo YR; Li L; Odoh SO; Fu HG; Zhang HX
    Phys Chem Chem Phys; 2011 Aug; 13(32):14481-9. PubMed ID: 21735037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel Ruthenium Sensitizers with a Phenothiazine Conjugated Bipyridyl Ligand for High-Efficiency Dye-Sensitized Solar Cells.
    She Z; Cheng Y; Zhang L; Li X; Wu D; Guo Q; Lan J; Wang R; You J
    ACS Appl Mater Interfaces; 2015 Dec; 7(50):27831-7. PubMed ID: 26624527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling ground and excited state properties through ligand changes in ruthenium polypyridyl complexes.
    Ashford DL; Glasson CR; Norris MR; Concepcion JJ; Keinan S; Brennaman MK; Templeton JL; Meyer TJ
    Inorg Chem; 2014 Jun; 53(11):5637-46. PubMed ID: 24849026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Ligand Structures of Copper Redox Shuttles on Photovoltaic Performance of Dye-Sensitized Solar Cells.
    Higashino T; Iiyama H; Nimura S; Kurumisawa Y; Imahori H
    Inorg Chem; 2020 Jan; 59(1):452-459. PubMed ID: 31829578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclometalated Fe(II) complexes as sensitizers in dye-sensitized solar cells.
    Mukherjee S; Bowman DN; Jakubikova E
    Inorg Chem; 2015 Jan; 54(2):560-9. PubMed ID: 25531506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.