BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 28188666)

  • 1. Natural variation for gene expression responses to abiotic stress in maize.
    Waters AJ; Makarevitch I; Noshay J; Burghardt LT; Hirsch CN; Hirsch CD; Springer NM
    Plant J; 2017 Feb; 89(4):706-717. PubMed ID: 28188666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cis-transcriptional variation in maize inbred lines B73 and Mo17 leads to additive expression patterns in the F1 hybrid.
    Stupar RM; Springer NM
    Genetics; 2006 Aug; 173(4):2199-210. PubMed ID: 16702414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptomic analysis of the maize (Zea mays L.) inbred line B73 response to heat stress at the seedling stage.
    Qian Y; Ren Q; Zhang J; Chen L
    Gene; 2019 Apr; 692():68-78. PubMed ID: 30641208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Patterns of Gene Expression Additivity and Regulatory Variation throughout Maize Development.
    Zhou P; Hirsch CN; Briggs SP; Springer NM
    Mol Plant; 2019 Mar; 12(3):410-425. PubMed ID: 30593858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide expression profiling and phenotypic evaluation of European maize inbreds at seedling stage in response to heat stress.
    Frey FP; Urbany C; Hüttel B; Reinhardt R; Stich B
    BMC Genomics; 2015 Feb; 16(1):123. PubMed ID: 25766122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Natural variation for alleles under epigenetic control by the maize chromomethylase zmet2.
    Makarevitch I; Stupar RM; Iniguez AL; Haun WJ; Barbazuk WB; Kaeppler SM; Springer NM
    Genetics; 2007 Oct; 177(2):749-60. PubMed ID: 17660570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of conserved and variable heat and cold stress response in maize using cis-regulatory information.
    Zhou P; Enders TA; Myers ZA; Magnusson E; Crisp PA; Noshay JM; Gomez-Cano F; Liang Z; Grotewold E; Greenham K; Springer NM
    Plant Cell; 2022 Jan; 34(1):514-534. PubMed ID: 34735005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maize transposable elements contribute to long non-coding RNAs that are regulatory hubs for abiotic stress response.
    Lv Y; Hu F; Zhou Y; Wu F; Gaut BS
    BMC Genomics; 2019 Nov; 20(1):864. PubMed ID: 31729949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Allele-specific expression patterns reveal biases and embryo-specific parent-of-origin effects in hybrid maize.
    Springer NM; Stupar RM
    Plant Cell; 2007 Aug; 19(8):2391-402. PubMed ID: 17693532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Draft Assembly of Elite Inbred Line PH207 Provides Insights into Genomic and Transcriptome Diversity in Maize.
    Hirsch CN; Hirsch CD; Brohammer AB; Bowman MJ; Soifer I; Barad O; Shem-Tov D; Baruch K; Lu F; Hernandez AG; Fields CJ; Wright CL; Koehler K; Springer NM; Buckler E; Buell CR; de Leon N; Kaeppler SM; Childs KL; Mikel MA
    Plant Cell; 2016 Nov; 28(11):2700-2714. PubMed ID: 27803309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transposable elements contribute to activation of maize genes in response to abiotic stress.
    Makarevitch I; Waters AJ; West PT; Stitzer M; Hirsch CN; Ross-Ibarra J; Springer NM
    PLoS Genet; 2015 Jan; 11(1):e1004915. PubMed ID: 25569788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonsyntenic Genes Drive Tissue-Specific Dynamics of Differential, Nonadditive, and Allelic Expression Patterns in Maize Hybrids.
    Baldauf JA; Marcon C; Paschold A; Hochholdinger F
    Plant Physiol; 2016 Jun; 171(2):1144-55. PubMed ID: 27208302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide identification and analysis of microRNA responding to long-term waterlogging in crown roots of maize seedlings.
    Zhai L; Liu Z; Zou X; Jiang Y; Qiu F; Zheng Y; Zhang Z
    Physiol Plant; 2013 Feb; 147(2):181-93. PubMed ID: 22607471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Dynamics of DNA methylation in the maize (Zea mays L.) inbred line B73 response to heat stress at the seedling stage.
    Qian Y; Hu W; Liao J; Zhang J; Ren Q
    Biochem Biophys Res Commun; 2019 May; 512(4):742-749. PubMed ID: 30926168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response of maize serine/arginine-rich protein gene family in seedlings to drought stress.
    Li J; Guo Y; Cui W; Xu A; Tian Z
    Yi Chuan; 2014 Jul; 36(7):697-706. PubMed ID: 25076035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complementation contributes to transcriptome complexity in maize (Zea mays L.) hybrids relative to their inbred parents.
    Paschold A; Jia Y; Marcon C; Lund S; Larson NB; Yeh CT; Ossowski S; Lanz C; Nettleton D; Schnable PS; Hochholdinger F
    Genome Res; 2012 Dec; 22(12):2445-54. PubMed ID: 23086286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulatory modules controlling early shade avoidance response in maize seedlings.
    Wang H; Wu G; Zhao B; Wang B; Lang Z; Zhang C; Wang H
    BMC Genomics; 2016 Mar; 17():269. PubMed ID: 27030359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Allelic variation of gene expression in maize hybrids.
    Guo M; Rupe MA; Zinselmeier C; Habben J; Bowen BA; Smith OS
    Plant Cell; 2004 Jul; 16(7):1707-16. PubMed ID: 15194819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Paternal dominance of trans-eQTL influences gene expression patterns in maize hybrids.
    Swanson-Wagner RA; DeCook R; Jia Y; Bancroft T; Ji T; Zhao X; Nettleton D; Schnable PS
    Science; 2009 Nov; 326(5956):1118-20. PubMed ID: 19965432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression analysis of genes encoding mitogen-activated protein kinases in maize provides a key link between abiotic stress signaling and plant reproduction.
    Sun W; Chen H; Wang J; Sun HW; Yang SK; Sang YL; Lu XB; Xu XH
    Funct Integr Genomics; 2015 Jan; 15(1):107-20. PubMed ID: 25388988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.