These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 28188666)

  • 21. Prolonged expression of the BX1 signature enzyme is associated with a recombination hotspot in the benzoxazinoid gene cluster in Zea mays.
    Zheng L; McMullen MD; Bauer E; Schön CC; Gierl A; Frey M
    J Exp Bot; 2015 Jul; 66(13):3917-30. PubMed ID: 25969552
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of cis regulatory evolution in maize domestication.
    Lemmon ZH; Bukowski R; Sun Q; Doebley JF
    PLoS Genet; 2014 Nov; 10(11):e1004745. PubMed ID: 25375861
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative transcriptome analysis reveals important roles of nonadditive genes in maize hybrid An'nong 591 under heat stress.
    Zhao Y; Hu F; Zhang X; Wei Q; Dong J; Bo C; Cheng B; Ma Q
    BMC Plant Biol; 2019 Jun; 19(1):273. PubMed ID: 31234785
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transcriptomic diversity in seedling roots of European flint maize in response to cold.
    Frey FP; Pitz M; Schön CC; Hochholdinger F
    BMC Genomics; 2020 Apr; 21(1):300. PubMed ID: 32293268
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mendelian and non-Mendelian regulation of gene expression in maize.
    Li L; Petsch K; Shimizu R; Liu S; Xu WW; Ying K; Yu J; Scanlon MJ; Schnable PS; Timmermans MC; Springer NM; Muehlbauer GJ
    PLoS Genet; 2013; 9(1):e1003202. PubMed ID: 23341782
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification and Characterization of Novel Maize Mirnas Involved in Different Genetic Background.
    Sheng L; Chai W; Gong X; Zhou L; Cai R; Li X; Zhao Y; Jiang H; Cheng B
    Int J Biol Sci; 2015; 11(7):781-93. PubMed ID: 26078720
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nonadditive expression and parent-of-origin effects identified by microarray and allele-specific expression profiling of maize endosperm.
    Stupar RM; Hermanson PJ; Springer NM
    Plant Physiol; 2007 Oct; 145(2):411-25. PubMed ID: 17766400
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ribosome profiling reveals dynamic translational landscape in maize seedlings under drought stress.
    Lei L; Shi J; Chen J; Zhang M; Sun S; Xie S; Li X; Zeng B; Peng L; Hauck A; Zhao H; Song W; Fan Z; Lai J
    Plant J; 2015 Dec; 84(6):1206-18. PubMed ID: 26568274
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deciphering the role of NADPH oxidase in complex interactions between maize (Zea mays L.) genotypes and cereal aphids.
    Sytykiewicz H
    Biochem Biophys Res Commun; 2016 Jul; 476(2):90-5. PubMed ID: 27178208
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Global analysis of gene expression in maize leaves treated with low temperature. II. Combined effect of severe cold (8 °C) and circadian rhythm.
    Jończyk M; Sobkowiak A; Trzcinska-Danielewicz J; Skoneczny M; Solecka D; Fronk J; Sowiński P
    Plant Mol Biol; 2017 Oct; 95(3):279-302. PubMed ID: 28828699
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular mechanisms governing shade responses in maize.
    Shi Q; Kong F; Zhang H; Jiang Y; Heng S; Liang R; Ma L; Liu J; Lu X; Li P; Li G
    Biochem Biophys Res Commun; 2019 Aug; 516(1):112-119. PubMed ID: 31200955
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expression of chloroplast protein synthesis elongation factor, EF-Tu, in two lines of maize with contrasting tolerance to heat stress during early stages of plant development.
    Momcilovic I; Ristic Z
    J Plant Physiol; 2007 Jan; 164(1):90-9. PubMed ID: 16542752
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Annotation and expression profile analysis of 2073 full-length cDNAs from stress-induced maize (Zea mays L.) seedlings.
    Jia J; Fu J; Zheng J; Zhou X; Huai J; Wang J; Wang M; Zhang Y; Chen X; Zhang J; Zhao J; Su Z; Lv Y; Wang G
    Plant J; 2006 Dec; 48(5):710-27. PubMed ID: 17076806
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design of an optimal promoter involved in the heat-induced transcriptional pathway in Arabidopsis, soybean, rice and maize.
    Maruyama K; Ogata T; Kanamori N; Yoshiwara K; Goto S; Yamamoto YY; Tokoro Y; Noda C; Takaki Y; Urawa H; Iuchi S; Urano K; Yoshida T; Sakurai T; Kojima M; Sakakibara H; Shinozaki K; Yamaguchi-Shinozaki K
    Plant J; 2017 Feb; 89(4):671-680. PubMed ID: 27862521
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanisms of progressive water deficit tolerance and growth recovery of Chinese maize foundation genotypes Huangzao 4 and Chang 7-2, which are proposed on the basis of comparison of physiological and transcriptomic responses.
    Li Y; Sun C; Huang Z; Pan J; Wang L; Fan X
    Plant Cell Physiol; 2009 Dec; 50(12):2092-111. PubMed ID: 19906836
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stability of Single-Parent Gene Expression Complementation in Maize Hybrids upon Water Deficit Stress.
    Marcon C; Paschold A; Malik WA; Lithio A; Baldauf JA; Altrogge L; Opitz N; Lanz C; Schoof H; Nettleton D; Piepho HP; Hochholdinger F
    Plant Physiol; 2017 Feb; 173(2):1247-1257. PubMed ID: 27999083
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcriptome profiling and validation of gene based single nucleotide polymorphisms (SNPs) in sorghum genotypes with contrasting responses to cold stress.
    Chopra R; Burow G; Hayes C; Emendack Y; Xin Z; Burke J
    BMC Genomics; 2015 Dec; 16():1040. PubMed ID: 26645959
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Root herbivory: molecular analysis of the maize transcriptome upon infestation by Southern corn rootworm, Diabrotica undecimpunctata howardi.
    Lawrence SD; Novak NG; Kayal WE; Ju CJ; Cooke JE
    Physiol Plant; 2012 Apr; 144(4):303-19. PubMed ID: 22172013
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genome-wide identification of microRNAs responding to early stages of phosphate deficiency in maize.
    Nie Z; Ren Z; Wang L; Su S; Wei X; Zhang X; Wu L; Liu D; Tang H; Liu H; Zhang S; Gao S
    Physiol Plant; 2016 Jun; 157(2):161-74. PubMed ID: 26572939
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Construction of regulatory networks mediated by small RNAs responsive to abiotic stresses in rice (Oryza sativa).
    Qin J; Ma X; Tang Z; Meng Y
    Comput Biol Chem; 2015 Oct; 58():69-80. PubMed ID: 26057839
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.