These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 2818869)

  • 1. Electric and flow linear dichroism of unfolded and condensed chromatin: a comparative study at low and intermediate ionic strength.
    Hagmar P; Marquet R; Colson P; Kubista M; Nielsen P; Norden B; Houssier C
    J Biomol Struct Dyn; 1989 Aug; 7(1):19-33. PubMed ID: 2818869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative study of the condensation of chicken erythrocyte and calf thymus chromatins by di- and multivalent cations.
    Marquet R; Colson P; Matton AM; Houssier C; Thiry M; Goessens G
    J Biomol Struct Dyn; 1988 Feb; 5(4):839-57. PubMed ID: 3271492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Higher order structure of chromatin: influence of ionic strength and proteolytic digestion on the birefringence properties of polynucleosomal fibers.
    Chauvin F; Roux B; Marion C
    J Biomol Struct Dyn; 1985 Feb; 2(4):805-19. PubMed ID: 3917217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Study of structural changes in chromatin in the presence of mono- and divalent cations by means of flow linear dichroism].
    Makarov VL; Dimitrov SI
    Mol Biol (Mosk); 1982; 16(5):1086-96. PubMed ID: 7144752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical anisotropy of chromatin. Flow linear dichroism and electric dichroism studies.
    Dimitrov SI; Smirnov IV; Makarov VL
    J Biomol Struct Dyn; 1988 Apr; 5(5):1135-48. PubMed ID: 3271501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reinterpretation of linear dichroism of chromatin supports a perpendicular linker orientation in the folded state.
    Kubista M; Hagmar P; Nielsen PE; Nordén B
    J Biomol Struct Dyn; 1990 Aug; 8(1):37-54. PubMed ID: 2275796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in chromatin chain flexibility during condensation induced by sodium chloride, as evidenced by electric dichroism.
    Marquet R; Favazza M; Koch MH; Houssier C
    FEBS Lett; 1990 Mar; 262(1):131-4. PubMed ID: 2318306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Linear dichroism of chromatin fibers].
    Dimitrov SI; Smirnov IV; Makarov VL
    Mol Biol (Mosk); 1987; 21(5):1400-10. PubMed ID: 3683383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electric dichroism and bending amplitudes of DNA fragments according to a simple orientation function for weakly bent rods.
    Porschke D
    Biopolymers; 1989 Aug; 28(8):1383-96. PubMed ID: 2752096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromatin higher-order structure: two-start double superhelix formed by zig-zag shaped nucleosome chain with folded linker DNA.
    Osipova TN; Karpova EV; Vorob'ev VI
    J Biomol Struct Dyn; 1990 Aug; 8(1):11-22. PubMed ID: 2275789
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversible in vitro packing of nucleosomal filaments into globular supranucleosomal units in chromatin of whole chick erythrocyte nuclei.
    Zentgraf H; Müller U; Franke WW
    Eur J Cell Biol; 1980 Dec; 23(1):171-88. PubMed ID: 7460964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Salt-induced conformational transitions in chromatin. A flow linear dichroism study.
    Makarov VL; Dimitrov SI; Petrov PT
    Eur J Biochem; 1983 Jul; 133(3):491-7. PubMed ID: 6861740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The structure of chromatin from the pigeon brain. II. Sedimentation analysis of oligonucleosome density].
    Osipova TN; Karpova EV; Svetlikova SB; Kukushkin AN; Pospelov VA
    Mol Biol (Mosk); 1986; 20(1):78-85. PubMed ID: 3951441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drug-DNA sequence-dependent interactions analysed by electric linear dichroism.
    Bailly C; Hénichart JP; Colson P; Houssier C
    J Mol Recognit; 1992 Dec; 5(4):155-71. PubMed ID: 1339484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural transitions of chromatin at low salt concentrations: a flow linear dichroism study.
    Kubista M; Härd T; Nielsen PE; Nordén B
    Biochemistry; 1985 Nov; 24(23):6336-42. PubMed ID: 4084524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Comparative study of nucleosome particles in chromatin from normal and tumor cells. II. Reconstitution, compaction and association induced by ionic strength of a solution].
    Sapozhnikova NA; Ramm EI; Ivanov GS; Vorob'ev VI
    Mol Biol (Mosk); 1988; 22(5):1353-8. PubMed ID: 3221857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron microscopy and atomic force microscopy studies of chromatin and metaphase chromosome structure.
    Daban JR
    Micron; 2011 Dec; 42(8):733-50. PubMed ID: 21703860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical model studies of the salt-induced 10-30-nm fiber transition in chromatin.
    Harrington RE
    Biochemistry; 1985 Apr; 24(8):2011-21. PubMed ID: 4016096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The structure and dynamics of H1-depleted chromatin.
    Smirnov IV; Krylov DYu ; Makarov VL
    J Biomol Struct Dyn; 1991 Jun; 8(6):1251-66. PubMed ID: 1892585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of electron transfer kinetics between redox proteins free in solution and electrostatically complexed to a lipid bilayer membrane.
    Cheddar G; Tollin G
    Arch Biochem Biophys; 1994 May; 310(2):392-6. PubMed ID: 8179324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.