These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 2818872)

  • 1. Monte Carlo simulation of hydration of the nucleic acid fragments.
    Teplukhin AV; Poltev VI; Shulyupina NV; Malenkov GG
    J Biomol Struct Dyn; 1989 Aug; 7(1):75-99. PubMed ID: 2818872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Monte-Carlo simulation of hydration of nucleic acid fragments].
    Teplukhin AV; Poltev VI; Malenkov GG
    Mol Biol (Mosk); 1990; 24(3):832-46. PubMed ID: 2402241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of the hydration shells of oligo(dA-dT).oligo(dA-dT) and oligo(dA).oligo(dT) tracts in B-type conformation on the basis of Monte Carlo calculations.
    Eisenhaber F; Tumanyan VG; Abagyan RA
    Biopolymers; 1990; 30(5-6):563-81. PubMed ID: 2265229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydration of B-DNA: comparison between the water network around poly(dG).poly(dC) and poly(dG-dC).poly(dG-dC) on the basis of Monte Carlo computations.
    Eisenhaber F; Tumanyan VG; Eisenmenger F; Gunia W
    Biopolymers; 1989 Mar; 28(3):741-61. PubMed ID: 2706312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Study of the hydration characteristics of nucleic acid bases and their complementary pairs using the Monte-Carlo method].
    Poltev VI; Shuliupina NV; Teplukhin AV; Malenkov GG
    Mol Biol (Mosk); 1987; 21(6):1600-9. PubMed ID: 3447050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dependence of the hydration shell structure in the minor groove of the DNA double helix on the groove width as revealed by Monte Carlo simulation.
    Teplukhin AV; Poltev VI; Chuprina VP
    Biopolymers; 1991 Oct; 31(12):1445-53. PubMed ID: 1816879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte-Carlo simulation of DNA duplex hydration. B and B' conformations of poly(dA).poly(dT) have different hydration shells.
    Poltev VI; Teplukhin AV; Chuprina VP
    J Biomol Struct Dyn; 1988 Dec; 6(3):575-86. PubMed ID: 3271540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Structure of the hydration envelope of the B-form of polydeoxyribonucleotides poly(dA-dC).poly(dG-dT) and poly(dA-dG).poly(dTs-dT) from the data of Monte-Carlo simulation].
    Eisenhaber F; Tumanian VG
    Biofizika; 1988; 33(3):422-9. PubMed ID: 3167107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Modeling of hydration of incorrect nucleic acid base pairs by the Monte Carlo method].
    Poltev VI; Lisniak IuV; Teplukhin AV
    Mol Biol (Mosk); 1990; 24(6):1640-8. PubMed ID: 2094812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling DNA hydration: comparison of calculated and experimental hydration properties of nuclic acid bases.
    Poltev VI; Malenkov GG; Gonzalez EJ; Teplukhin AV; Rein R; Shibata M; Miller JH
    J Biomol Struct Dyn; 1996 Feb; 13(4):717-26. PubMed ID: 8906892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The study of the stability of Watson-Crick nucleic acid base pairs in water and dimethyl sulfoxide: computer simulation by the Monte Carlo method.
    Danilov VI; Zheltovsky NV; Slyusarchuk ON; Poltev VI; Alderfer JL
    J Biomol Struct Dyn; 1997 Aug; 15(1):69-80. PubMed ID: 9283981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural principles of B-DNA grooves hydration in fibers as revealed by Monte Carlo simulations and X-ray diffraction.
    Eisenhaber F; Mannik JH; Tumanyan VG
    Biopolymers; 1990 Aug 15-Sep; 29(10-11):1453-64. PubMed ID: 2361155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nature of the stacking of nucleic acid bases in water: a Monte Carlo simulation.
    Danilov VI; Tolokh IS
    J Biomol Struct Dyn; 1984 Aug; 2(1):119-30. PubMed ID: 6400926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydration of nucleic acid bases studied using novel atom-atom potential functions.
    Poltev VI; Grokhlina TI; Malenkov GG
    J Biomol Struct Dyn; 1984 Oct; 2(2):413-29. PubMed ID: 6400943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A theoretical study of the aqueous hydration of canonical B d(CGCGAATTCGCG): Monte Carlo simulation and comparison with crystallographic ordered water sites.
    Subramanian PS; Beveridge DL
    J Biomol Struct Dyn; 1989 Jun; 6(6):1093-122. PubMed ID: 2684218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water molecules in DNA recognition II: a molecular dynamics view of the structure and hydration of the trp operator.
    Bonvin AM; Sunnerhagen M; Otting G; van Gunsteren WF
    J Mol Biol; 1998 Oct; 282(4):859-73. PubMed ID: 9743632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined Monte Carlo and quantum mechanics study of the hydration of the guanine-cytosine base pair.
    Coutinho K; Ludwig V; Canuto S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):061902. PubMed ID: 15244612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling high-resolution hydration patterns in correlation with DNA sequence and conformation.
    Feig M; Pettitt BM
    J Mol Biol; 1999 Mar; 286(4):1075-95. PubMed ID: 10047483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of a T4 hairpin loop on a Z-DNA stem and comparison with A-RNA and B-DNA loops.
    Chattopadhyaya R; Grzeskowiak K; Dickerson RE
    J Mol Biol; 1990 Jan; 211(1):189-210. PubMed ID: 2299669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo simulation of hydration of the guanine-uracil pairs with guanine in two tautomeric forms: contribution of water bridging to relative stability of mispairs.
    Poltev VI; Teplukhin AV; Kwiatkowski JS
    J Biomol Struct Dyn; 1992 Feb; 9(4):747-57. PubMed ID: 1616628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.