BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 28188726)

  • 1. The roles of V-type H
    D'Silva NM; Donini A; O'Donnell MJ
    J Insect Physiol; 2017 Apr; 98():284-290. PubMed ID: 28188726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cationic pathway of pH regulation in larvae of Anopheles gambiae.
    Okech BA; Boudko DY; Linser PJ; Harvey WR
    J Exp Biol; 2008 Mar; 211(Pt 6):957-68. PubMed ID: 18310121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tissue-specific ionomotive enzyme activity and K+ reabsorption reveal the rectum as an important ionoregulatory organ in larval Chironomus riparius exposed to varying salinity.
    Jonusaite S; Kelly SP; Donini A
    J Exp Biol; 2013 Oct; 216(Pt 19):3637-48. PubMed ID: 23788699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport of H(+), Na(+) and K(+) across the posterior midgut of blood-fed mosquitoes (Aedes aegypti).
    Pacey EK; O'Donnell MJ
    J Insect Physiol; 2014 Feb; 61():42-50. PubMed ID: 24406662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of transport of H
    D'Silva NM; O'Donnell MJ
    J Insect Physiol; 2020; 121():103997. PubMed ID: 31846613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenotypic plasticity in response to dietary salt stress: Na+ and K+ transport by the gut of Drosophila melanogaster larvae.
    Naikkhwah W; O'Donnell MJ
    J Exp Biol; 2012 Feb; 215(Pt 3):461-70. PubMed ID: 22246255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pharmacological characterisation of apical Na+ and Cl- transport mechanisms of the anal papillae in the larval mosquito Aedes aegypti.
    Del Duca O; Nasirian A; Galperin V; Donini A
    J Exp Biol; 2011 Dec; 214(Pt 23):3992-9. PubMed ID: 22071191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of diuretic hormone 31, drosokinin, and allatostatin A on transepithelial K⁺ transport and contraction frequency in the midgut and hindgut of larval Drosophila melanogaster.
    Vanderveken M; O'Donnell MJ
    Arch Insect Biochem Physiol; 2014 Feb; 85(2):76-93. PubMed ID: 24408875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. P-type Na+/K+-ATPase and V-type H+-ATPase expression patterns in the osmoregulatory organs of larval and adult mosquito Aedes aegypti.
    Patrick ML; Aimanova K; Sanders HR; Gill SS
    J Exp Biol; 2006 Dec; 209(Pt 23):4638-51. PubMed ID: 17114398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular characterization of sodium/proton exchanger 3 (NHE3) from the yellow fever vector, Aedes aegypti.
    Pullikuth AK; Aimanova K; Kang'ethe W; Sanders HR; Gill SS
    J Exp Biol; 2006 Sep; 209(Pt 18):3529-44. PubMed ID: 16943493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution and serotonin-induced activation of vacuolar-type H+-ATPase in the salivary glands of the blowfly Calliphora vicina.
    Zimmermann B; Dames P; Walz B; Baumann O
    J Exp Biol; 2003 Jun; 206(Pt 11):1867-76. PubMed ID: 12728008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular mechanism and functional significance of acid generation in the Drosophila midgut.
    Overend G; Luo Y; Henderson L; Douglas AE; Davies SA; Dow JA
    Sci Rep; 2016 Jun; 6():27242. PubMed ID: 27250760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrogenic H+ transport and pH gradients generated by a V-H+ -ATPase in the isolated perfused larval Drosophila midgut.
    Shanbhag S; Tripathi S
    J Membr Biol; 2005 Jul; 206(1):61-72. PubMed ID: 16440182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The physiological response of larval Chironomus riparius (Meigen) to abrupt brackish water exposure.
    Jonusaite S; Kelly SP; Donini A
    J Comp Physiol B; 2011 Apr; 181(3):343-52. PubMed ID: 21061010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. THE INSECT V-ATPase, A PLASMA MEMBRANE PROTON PUMP ENERGIZING SECONDARY ACTIVE TRANSPORT: IMMUNOLOGICAL EVIDENCE FOR THE OCCURRENCE OF A V-ATPase IN INSECT ION-TRANSPORTING EPITHELIA.
    Klein U
    J Exp Biol; 1992 Nov; 172(Pt 1):345-354. PubMed ID: 9874747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Na,K-ATPase and V-ATPase in ovarian follicles of Drosophila melanogaster.
    Bohrmann J; Braun B
    Biol Cell; 1999 Mar; 91(2):85-98. PubMed ID: 10399824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunolocalization of Na+/K+-ATPase, carbonic anhydrase II, and vacuolar H+-ATPase in the gills of freshwater adult lampreys, Geotria australis.
    Choe KP; O'Brien S; Evans DH; Toop T; Edwards SL
    J Exp Zool A Comp Exp Biol; 2004 Aug; 301(8):654-65. PubMed ID: 15286945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strong alkalinization in the anterior midgut of larval yellow fever mosquitoes (Aedes aegypti): involvement of luminal Na+/K+-ATPase.
    Onken H; Patel M; Javoroncov M; Izeirovski S; Moffett SB; Moffett DF
    J Exp Zool A Ecol Genet Physiol; 2009 Mar; 311(3):155-61. PubMed ID: 19048614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ammonia transport in the excretory system of mosquito larvae (Aedes aegypti): Rh protein expression and the transcriptome of the rectum.
    Durant AC; Donini A
    Comp Biochem Physiol A Mol Integr Physiol; 2024 Aug; 294():111649. PubMed ID: 38670480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical patterns during Drosophila oogenesis: ion-transport mechanisms generate stage-specific gradients of pH and membrane potential in the follicle-cell epithelium.
    Weiß I; Bohrmann J
    BMC Dev Biol; 2019 Jun; 19(1):12. PubMed ID: 31226923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.