These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Tissue-specific ionomotive enzyme activity and K+ reabsorption reveal the rectum as an important ionoregulatory organ in larval Chironomus riparius exposed to varying salinity. Jonusaite S; Kelly SP; Donini A J Exp Biol; 2013 Oct; 216(Pt 19):3637-48. PubMed ID: 23788699 [TBL] [Abstract][Full Text] [Related]
4. Transport of H(+), Na(+) and K(+) across the posterior midgut of blood-fed mosquitoes (Aedes aegypti). Pacey EK; O'Donnell MJ J Insect Physiol; 2014 Feb; 61():42-50. PubMed ID: 24406662 [TBL] [Abstract][Full Text] [Related]
5. Mechanisms of transport of H D'Silva NM; O'Donnell MJ J Insect Physiol; 2020; 121():103997. PubMed ID: 31846613 [TBL] [Abstract][Full Text] [Related]
6. Phenotypic plasticity in response to dietary salt stress: Na+ and K+ transport by the gut of Drosophila melanogaster larvae. Naikkhwah W; O'Donnell MJ J Exp Biol; 2012 Feb; 215(Pt 3):461-70. PubMed ID: 22246255 [TBL] [Abstract][Full Text] [Related]
7. Pharmacological characterisation of apical Na+ and Cl- transport mechanisms of the anal papillae in the larval mosquito Aedes aegypti. Del Duca O; Nasirian A; Galperin V; Donini A J Exp Biol; 2011 Dec; 214(Pt 23):3992-9. PubMed ID: 22071191 [TBL] [Abstract][Full Text] [Related]
8. Effects of diuretic hormone 31, drosokinin, and allatostatin A on transepithelial K⁺ transport and contraction frequency in the midgut and hindgut of larval Drosophila melanogaster. Vanderveken M; O'Donnell MJ Arch Insect Biochem Physiol; 2014 Feb; 85(2):76-93. PubMed ID: 24408875 [TBL] [Abstract][Full Text] [Related]
9. P-type Na+/K+-ATPase and V-type H+-ATPase expression patterns in the osmoregulatory organs of larval and adult mosquito Aedes aegypti. Patrick ML; Aimanova K; Sanders HR; Gill SS J Exp Biol; 2006 Dec; 209(Pt 23):4638-51. PubMed ID: 17114398 [TBL] [Abstract][Full Text] [Related]
10. Molecular characterization of sodium/proton exchanger 3 (NHE3) from the yellow fever vector, Aedes aegypti. Pullikuth AK; Aimanova K; Kang'ethe W; Sanders HR; Gill SS J Exp Biol; 2006 Sep; 209(Pt 18):3529-44. PubMed ID: 16943493 [TBL] [Abstract][Full Text] [Related]
11. Distribution and serotonin-induced activation of vacuolar-type H+-ATPase in the salivary glands of the blowfly Calliphora vicina. Zimmermann B; Dames P; Walz B; Baumann O J Exp Biol; 2003 Jun; 206(Pt 11):1867-76. PubMed ID: 12728008 [TBL] [Abstract][Full Text] [Related]
12. Molecular mechanism and functional significance of acid generation in the Drosophila midgut. Overend G; Luo Y; Henderson L; Douglas AE; Davies SA; Dow JA Sci Rep; 2016 Jun; 6():27242. PubMed ID: 27250760 [TBL] [Abstract][Full Text] [Related]
13. Electrogenic H+ transport and pH gradients generated by a V-H+ -ATPase in the isolated perfused larval Drosophila midgut. Shanbhag S; Tripathi S J Membr Biol; 2005 Jul; 206(1):61-72. PubMed ID: 16440182 [TBL] [Abstract][Full Text] [Related]
14. The physiological response of larval Chironomus riparius (Meigen) to abrupt brackish water exposure. Jonusaite S; Kelly SP; Donini A J Comp Physiol B; 2011 Apr; 181(3):343-52. PubMed ID: 21061010 [TBL] [Abstract][Full Text] [Related]
15. THE INSECT V-ATPase, A PLASMA MEMBRANE PROTON PUMP ENERGIZING SECONDARY ACTIVE TRANSPORT: IMMUNOLOGICAL EVIDENCE FOR THE OCCURRENCE OF A V-ATPase IN INSECT ION-TRANSPORTING EPITHELIA. Klein U J Exp Biol; 1992 Nov; 172(Pt 1):345-354. PubMed ID: 9874747 [TBL] [Abstract][Full Text] [Related]
16. Na,K-ATPase and V-ATPase in ovarian follicles of Drosophila melanogaster. Bohrmann J; Braun B Biol Cell; 1999 Mar; 91(2):85-98. PubMed ID: 10399824 [TBL] [Abstract][Full Text] [Related]
17. Immunolocalization of Na+/K+-ATPase, carbonic anhydrase II, and vacuolar H+-ATPase in the gills of freshwater adult lampreys, Geotria australis. Choe KP; O'Brien S; Evans DH; Toop T; Edwards SL J Exp Zool A Comp Exp Biol; 2004 Aug; 301(8):654-65. PubMed ID: 15286945 [TBL] [Abstract][Full Text] [Related]
18. Strong alkalinization in the anterior midgut of larval yellow fever mosquitoes (Aedes aegypti): involvement of luminal Na+/K+-ATPase. Onken H; Patel M; Javoroncov M; Izeirovski S; Moffett SB; Moffett DF J Exp Zool A Ecol Genet Physiol; 2009 Mar; 311(3):155-61. PubMed ID: 19048614 [TBL] [Abstract][Full Text] [Related]
19. Ammonia transport in the excretory system of mosquito larvae (Aedes aegypti): Rh protein expression and the transcriptome of the rectum. Durant AC; Donini A Comp Biochem Physiol A Mol Integr Physiol; 2024 Aug; 294():111649. PubMed ID: 38670480 [TBL] [Abstract][Full Text] [Related]
20. Electrochemical patterns during Drosophila oogenesis: ion-transport mechanisms generate stage-specific gradients of pH and membrane potential in the follicle-cell epithelium. Weiß I; Bohrmann J BMC Dev Biol; 2019 Jun; 19(1):12. PubMed ID: 31226923 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]