These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 28188985)

  • 1. 3D-SSF: A bio-inspired approach for dynamic multi-subject clustering of white matter tracts.
    Chekir A; Hassas S; Descoteaux M; Côté M; Garyfallidis E; Oulebsir-Boumghar F
    Comput Biol Med; 2017 Apr; 83():10-21. PubMed ID: 28188985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recognition of white matter bundles using local and global streamline-based registration and clustering.
    Garyfallidis E; Côté MA; Rheault F; Sidhu J; Hau J; Petit L; Fortin D; Cunanne S; Descoteaux M
    Neuroimage; 2018 Apr; 170():283-295. PubMed ID: 28712994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Informed constrained spherical deconvolution (iCSD).
    Roine T; Jeurissen B; Perrone D; Aelterman J; Philips W; Leemans A; Sijbers J
    Med Image Anal; 2015 Aug; 24(1):269-281. PubMed ID: 25660002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A flocking based method for brain tractography.
    Aranda R; Rivera M; Ramirez-Manzanares A
    Med Image Anal; 2014 Apr; 18(3):515-30. PubMed ID: 24583805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generative Sampling in Bundle Tractography using Autoencoders (GESTA).
    Legarreta JH; Petit L; Jodoin PM; Descoteaux M
    Med Image Anal; 2023 Apr; 85():102761. PubMed ID: 36773366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sparse and Adaptive Diffusion Dictionary (SADD) for recovering intra-voxel white matter structure.
    Aranda R; Ramirez-Manzanares A; Rivera M
    Med Image Anal; 2015 Dec; 26(1):243-55. PubMed ID: 26519793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tractometer: towards validation of tractography pipelines.
    Côté MA; Girard G; Boré A; Garyfallidis E; Houde JC; Descoteaux M
    Med Image Anal; 2013 Oct; 17(7):844-57. PubMed ID: 23706753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SIFT2: Enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography.
    Smith RE; Tournier JD; Calamante F; Connelly A
    Neuroimage; 2015 Oct; 119():338-51. PubMed ID: 26163802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AnatomiCuts: Hierarchical clustering of tractography streamlines based on anatomical similarity.
    Siless V; Chang K; Fischl B; Yendiki A
    Neuroimage; 2018 Feb; 166():32-45. PubMed ID: 29100937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust and efficient linear registration of white-matter fascicles in the space of streamlines.
    Garyfallidis E; Ocegueda O; Wassermann D; Descoteaux M
    Neuroimage; 2015 Aug; 117():124-40. PubMed ID: 25987367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated longitudinal intra-subject analysis (ALISA) for diffusion MRI tractography.
    Aarnink SH; Vos SB; Leemans A; Jernigan TL; Madsen KS; Baaré WF
    Neuroimage; 2014 Feb; 86():404-16. PubMed ID: 24157921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multifiber pathway reconstruction using bundle constrained streamline.
    Chu CY; Huang JP; Sun CY; Zhang YL; Liu WY; Zhu YM
    Comput Med Imaging Graph; 2015 Dec; 46 Pt 3():291-9. PubMed ID: 26342757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Example-Based Multi-Atlas Approach to Automatic Labeling of White Matter Tracts.
    Yoo SW; Guevara P; Jeong Y; Yoo K; Shin JS; Mangin JF; Seong JK
    PLoS One; 2015; 10(7):e0133337. PubMed ID: 26225419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast Automatic Segmentation of White Matter Streamlines Based on a Multi-Subject Bundle Atlas.
    Labra N; Guevara P; Duclap D; Houenou J; Poupon C; Mangin JF; Figueroa M
    Neuroinformatics; 2017 Jan; 15(1):71-86. PubMed ID: 27722821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data.
    Jeurissen B; Tournier JD; Dhollander T; Connelly A; Sijbers J
    Neuroimage; 2014 Dec; 103():411-426. PubMed ID: 25109526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An automated string-based approach to extracting and characterizing White Matter fiber-bundles.
    Cauteruccio F; Stamile C; Terracina G; Ursino D; Sappey-Marinier D
    Comput Biol Med; 2016 Oct; 77():64-75. PubMed ID: 27522235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic clustering of white matter fibers in brain diffusion MRI with an application to genetics.
    Jin Y; Shi Y; Zhan L; Gutman BA; de Zubicaray GI; McMahon KL; Wright MJ; Toga AW; Thompson PM
    Neuroimage; 2014 Oct; 100():75-90. PubMed ID: 24821529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Q-ball imaging models: comparison between high and low angular resolution diffusion-weighted MRI protocols for investigation of brain white matter integrity.
    Caiazzo G; Trojsi F; Cirillo M; Tedeschi G; Esposito F
    Neuroradiology; 2016 Feb; 58(2):209-15. PubMed ID: 26573606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bundle-specific tractography with incorporated anatomical and orientational priors.
    Rheault F; St-Onge E; Sidhu J; Maier-Hein K; Tzourio-Mazoyer N; Petit L; Descoteaux M
    Neuroimage; 2019 Feb; 186():382-398. PubMed ID: 30453031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated segmentation of white matter fiber bundles using diffusion tensor imaging data and a new density based clustering algorithm.
    Kamali T; Stashuk D
    Artif Intell Med; 2016 Oct; 73():14-22. PubMed ID: 27926378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.