BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 28189416)

  • 1. Repair of Oxidative DNA Damage in Saccharomyces cerevisiae.
    Chalissery J; Jalal D; Al-Natour Z; Hassan AH
    DNA Repair (Amst); 2017 Mar; 51():2-13. PubMed ID: 28189416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Five repair pathways in one context: chromatin modification during DNA repair.
    Ataian Y; Krebs JE
    Biochem Cell Biol; 2006 Aug; 84(4):490-504. PubMed ID: 16936822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA repair in neurons: so if they don't divide what's to repair?
    Fishel ML; Vasko MR; Kelley MR
    Mutat Res; 2007 Jan; 614(1-2):24-36. PubMed ID: 16879837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide map of Apn1 binding sites under oxidative stress in Saccharomyces cerevisiae.
    Morris LP; Conley AB; Degtyareva N; Jordan IK; Doetsch PW
    Yeast; 2017 Nov; 34(11):447-458. PubMed ID: 28752642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relative contribution of homologous recombination and non-homologous end-joining to DNA double-strand break repair after oxidative stress in Saccharomyces cerevisiae.
    Letavayová L; Marková E; Hermanská K; Vlcková V; Vlasáková D; Chovanec M; Brozmanová J
    DNA Repair (Amst); 2006 May; 5(5):602-10. PubMed ID: 16515894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repair of oxidative damage in mitochondrial DNA of Saccharomyces cerevisiae: involvement of the MSH1-dependent pathway.
    Dzierzbicki P; Koprowski P; Fikus MU; Malc E; Ciesla Z
    DNA Repair (Amst); 2004 Apr; 3(4):403-11. PubMed ID: 15010316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA interstrand cross-link repair in Saccharomyces cerevisiae.
    Lehoczký P; McHugh PJ; Chovanec M
    FEMS Microbiol Rev; 2007 Mar; 31(2):109-33. PubMed ID: 17096663
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigations on the role of base excision repair and non-homologous end-joining pathways in sodium selenite-induced toxicity and mutagenicity in Saccharomyces cerevisiae.
    Mániková D; Vlasáková D; Loduhová J; Letavayová L; Vigasová D; Krascsenitsová E; Vlcková V; Brozmanová J; Chovanec M
    Mutagenesis; 2010 Mar; 25(2):155-62. PubMed ID: 19955329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondria-nucleus network for genome stability.
    Kaniak-Golik A; Skoneczna A
    Free Radic Biol Med; 2015 May; 82():73-104. PubMed ID: 25640729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial DNA repair and damage tolerance.
    Stein A; Sia EA
    Front Biosci (Landmark Ed); 2017 Jan; 22(5):920-943. PubMed ID: 27814655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Apn1 AP-endonuclease is essential for the repair of oxidatively damaged DNA bases in yeast frataxin-deficient cells.
    Lefevre S; Brossas C; Auchère F; Boggetto N; Camadro JM; Santos R
    Hum Mol Genet; 2012 Sep; 21(18):4060-72. PubMed ID: 22706278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative DNA damage causes mitochondrial genomic instability in Saccharomyces cerevisiae.
    Doudican NA; Song B; Shadel GS; Doetsch PW
    Mol Cell Biol; 2005 Jun; 25(12):5196-204. PubMed ID: 15923634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repair of oxidized DNA bases in the yeast Saccharomyces cerevisiae.
    Girard PM; Boiteux S
    Biochimie; 1997 Oct; 79(9-10):559-66. PubMed ID: 9466693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N-methylpurines are heterogeneously repaired in human mitochondria but not evidently repaired in yeast mitochondria.
    Li S
    DNA Repair (Amst); 2011 Jan; 10(1):65-72. PubMed ID: 20971688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Saccharomyces cerevisiae DNA repair processes: an update.
    Ramotar D; Masson JY
    Mol Cell Biochem; 1996 May; 158(1):65-75. PubMed ID: 8791286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Base Excision Repair in the Mitochondria.
    Prakash A; Doublié S
    J Cell Biochem; 2015 Aug; 116(8):1490-9. PubMed ID: 25754732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The interacting pathways for prevention and repair of oxidative DNA damage.
    Slupphaug G; Kavli B; Krokan HE
    Mutat Res; 2003 Oct; 531(1-2):231-51. PubMed ID: 14637258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Further phenotypic characterization of pso mutants of Saccharomyces cerevisiae with respect to DNA repair and response to oxidative stress.
    Pungartnik C; Picada J; Brendel M; Henriques JA
    Genet Mol Res; 2002 Mar; 1(1):79-89. PubMed ID: 14963816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Msh1p counteracts oxidative lesion-induced instability of mtDNA and stimulates mitochondrial recombination in Saccharomyces cerevisiae.
    Kaniak A; Dzierzbicki P; Rogowska AT; Malc E; Fikus M; Ciesla Z
    DNA Repair (Amst); 2009 Mar; 8(3):318-29. PubMed ID: 19056520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation of Rad55 on serines 2, 8, and 14 is required for efficient homologous recombination in the recovery of stalled replication forks.
    Herzberg K; Bashkirov VI; Rolfsmeier M; Haghnazari E; McDonald WH; Anderson S; Bashkirova EV; Yates JR; Heyer WD
    Mol Cell Biol; 2006 Nov; 26(22):8396-409. PubMed ID: 16966380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.