BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

511 related articles for article (PubMed ID: 28189544)

  • 21. Three-Dimensional Modeling in Congenital and Structural Heart Perioperative Care and Education: A Path in Evolution.
    Sarris GE; Polimenakos AC
    Pediatr Cardiol; 2017 Jun; 38(5):883-885. PubMed ID: 28456827
    [No Abstract]   [Full Text] [Related]  

  • 22. 3D heart model printing for preparation of percutaneous structural interventions: description of the technology and case report.
    Dankowski R; Baszko A; Sutherland M; Firek L; Kałmucki P; Wróblewska K; Szyszka A; Groothuis A; Siminiak T
    Kardiol Pol; 2014; 72(6):546-51. PubMed ID: 24961451
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cardiac 3D Printing and its Future Directions.
    Vukicevic M; Mosadegh B; Min JK; Little SH
    JACC Cardiovasc Imaging; 2017 Feb; 10(2):171-184. PubMed ID: 28183437
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Three-dimensional printing in congenital heart disease: A systematic review.
    Lau I; Sun Z
    J Med Radiat Sci; 2018 Sep; 65(3):226-236. PubMed ID: 29453808
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of 3D printing technology combined with PBL teaching model in teaching clinical nursing in congenital heart surgery: A case-control study.
    Tan H; Huang E; Deng X; Ouyang S
    Medicine (Baltimore); 2021 May; 100(20):e25918. PubMed ID: 34011060
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using 3D Physical Modeling to Plan Surgical Corrections of Complex Congenital Heart Defects.
    Vodiskar J; Kütting M; Steinseifer U; Vazquez-Jimenez JF; Sonntag SJ
    Thorac Cardiovasc Surg; 2017 Jan; 65(1):31-35. PubMed ID: 27177266
    [No Abstract]   [Full Text] [Related]  

  • 27. Percutaneous Transcatheter Mitral Valve Replacement: Patient-specific Three-dimensional Computer-based Heart Model and Prototyping.
    Vaquerizo B; Theriault-Lauzier P; Piazza N
    Rev Esp Cardiol (Engl Ed); 2015 Dec; 68(12):1165-73. PubMed ID: 26607029
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Three-Dimensional Printing of Congenital Heart Disease Models for Cardiac Surgery Simulation: Evaluation of Surgical Skill Improvement among Inexperienced Cardiothoracic Surgeons.
    Nam JG; Lee W; Jeong B; Park EA; Lim JY; Kwak Y; Lim HG
    Korean J Radiol; 2021 May; 22(5):706-713. PubMed ID: 33543844
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D-printed aortic stenosis model with fragile and crushable calcifications for off-the-job training and surgical simulation.
    Shirakawa T; Yoshitatsu M; Koyama Y; Mizoguchi H; Toda K; Sawa Y
    Multimed Man Cardiothorac Surg; 2018 May; 2018():. PubMed ID: 29781590
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three-dimensional printing technology supports surgery planning in patients with complex congenital heart defects.
    Jaworski R; Haponiuk I; Chojnicki M; Olszewski H; Lulewicz P
    Kardiol Pol; 2017; 75(2):185. PubMed ID: 28205200
    [No Abstract]   [Full Text] [Related]  

  • 31. The Utility of Simulation in the Management of Patients With Congenital Heart Disease: Past, Present, and Future.
    Subat A; Goldberg A; Demaria S; Katz D
    Semin Cardiothorac Vasc Anesth; 2018 Mar; 22(1):81-90. PubMed ID: 29231093
    [TBL] [Abstract][Full Text] [Related]  

  • 32. "Just-In-Time" Simulation Training Using 3-D Printed Cardiac Models After Congenital Cardiac Surgery.
    Olivieri LJ; Su L; Hynes CF; Krieger A; Alfares FA; Ramakrishnan K; Zurakowski D; Marshall MB; Kim PC; Jonas RA; Nath DS
    World J Pediatr Congenit Heart Surg; 2016 Mar; 7(2):164-8. PubMed ID: 26957398
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Three-dimensional virtual and printed models improve preoperative planning and promote patient-safety in complex congenital and pediatric cardiac surgery].
    Király L
    Orv Hetil; 2019 May; 160(19):747-755. PubMed ID: 31055963
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cardiac 3D printing for better understanding of congenital heart disease.
    Hadeed K; Acar P; Dulac Y; Cuttone F; Alacoque X; Karsenty C
    Arch Cardiovasc Dis; 2018 Jan; 111(1):1-4. PubMed ID: 29158165
    [No Abstract]   [Full Text] [Related]  

  • 35. Applications of three-dimensional printing technology in urological practice.
    Youssef RF; Spradling K; Yoon R; Dolan B; Chamberlin J; Okhunov Z; Clayman R; Landman J
    BJU Int; 2015 Nov; 116(5):697-702. PubMed ID: 26010346
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hybrid 3D printing: a game-changer in personalized cardiac medicine?
    Kurup HK; Samuel BP; Vettukattil JJ
    Expert Rev Cardiovasc Ther; 2015 Dec; 13(12):1281-4. PubMed ID: 26465262
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Use of 3D models of vascular rings and slings to improve resident education.
    Jones TW; Seckeler MD
    Congenit Heart Dis; 2017 Sep; 12(5):578-582. PubMed ID: 28608434
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Innovations in Preoperative Planning: Insights into Another Dimension Using 3D Printing for Cardiac Disease.
    Farooqi KM; Mahmood F
    J Cardiothorac Vasc Anesth; 2018 Aug; 32(4):1937-1945. PubMed ID: 29277300
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hands-On Surgical Simulation in Congenital Heart Surgery: Literature Review and Future Perspective.
    Hussein N; Honjo O; Haller C; Hickey E; Coles JG; Williams WG; Yoo SJ
    Semin Thorac Cardiovasc Surg; 2020; 32(1):98-105. PubMed ID: 31220532
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three-dimensional printing models in congenital heart disease education for medical students: a controlled comparative study.
    Su W; Xiao Y; He S; Huang P; Deng X
    BMC Med Educ; 2018 Aug; 18(1):178. PubMed ID: 30068323
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.