These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 28189669)

  • 1. Kinetic order-disorder transitions in a pause-and-go swarming model with memory.
    Rimer O; Ariel G
    J Theor Biol; 2017 Apr; 419():90-99. PubMed ID: 28189669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Locust Collective Motion and Its Modeling.
    Ariel G; Ayali A
    PLoS Comput Biol; 2015 Dec; 11(12):e1004522. PubMed ID: 26656851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Individual pause-and-go motion is instrumental to the formation and maintenance of swarms of marching locust nymphs.
    Ariel G; Ophir Y; Levi S; Ben-Jacob E; Ayali A
    PLoS One; 2014; 9(7):e101636. PubMed ID: 24988464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pausing to swarm: locust intermittent motion is instrumental for swarming-related visual processing.
    Aidan Y; Bleichman I; Ayali A
    Biol Lett; 2024 Feb; 20(2):20230468. PubMed ID: 38378141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Making noise: emergent stochasticity in collective motion.
    Bode NW; Franks DW; Wood AJ
    J Theor Biol; 2010 Dec; 267(3):292-9. PubMed ID: 20816990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transitions in a self-propelled-particles model with coupling of accelerations.
    Szabó P; Nagy M; Vicsek T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 1):021908. PubMed ID: 19391779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Agent-based and continuous models of hopper bands for the Australian plague locust: How resource consumption mediates pulse formation and geometry.
    Bernoff AJ; Culshaw-Maurer M; Everett RA; Hohn ME; Strickland WC; Weinburd J
    PLoS Comput Biol; 2020 May; 16(5):e1007820. PubMed ID: 32365072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emergent behavioural phenotypes of swarming models revealed by mimicking a frustrated anti-ferromagnet.
    Pearce DJ; Turner MS
    J R Soc Interface; 2015 Oct; 12(111):20150520. PubMed ID: 26423438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiscale analysis of collective motion and decision-making in swarms: an advection-diffusion equation with memory approach.
    Raghib M; Levin SA; Kevrekidis IG
    J Theor Biol; 2010 Jun; 264(3):893-913. PubMed ID: 20178805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous observation of intermittent locomotion of multiple fish by fine-scale spatiotemporal three-dimensional positioning.
    Takagi J; Ichikawa K; Arai N; Miyamoto Y; Uchida K; Shoji J; Mitamura H
    PLoS One; 2018; 13(7):e0201029. PubMed ID: 30024958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intermittent motion in desert locusts: behavioural complexity in simple environments.
    Bazazi S; Bartumeus F; Hale JJ; Couzin ID
    PLoS Comput Biol; 2012; 8(5):e1002498. PubMed ID: 22589707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-organized sorting limits behavioral variability in swarms.
    Copenhagen K; Quint DA; Gopinathan A
    Sci Rep; 2016 Aug; 6():31808. PubMed ID: 27550316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of sensory blind zones on milling behavior in a dynamic self-propelled particle model.
    Newman JP; Sayama H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 1):011913. PubMed ID: 18763988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Swarming in homogeneous environments: a social interaction based framework.
    Li X; Xiao J
    J Theor Biol; 2010 Jun; 264(3):747-59. PubMed ID: 20211189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collective dynamics of self-propelled particles with variable speed.
    Mishra S; Tunstrøm K; Couzin ID; Huepe C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011901. PubMed ID: 23005446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vision-based collective motion: A locust-inspired reductionist model.
    Krongauz DL; Ayali A; Kaminka GA
    PLoS Comput Biol; 2024 Jan; 20(1):e1011796. PubMed ID: 38285716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Topologically induced swarming phase transition on a 2D percolated lattice.
    Quint DA; Gopinathan A
    Phys Biol; 2015 Jun; 12(4):046008. PubMed ID: 26083125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using distributed partial memories to improve self-organizing collective movements.
    Winder R; Reggia JA
    IEEE Trans Syst Man Cybern B Cybern; 2004 Aug; 34(4):1697-707. PubMed ID: 15462437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nutritional state and collective motion: from individuals to mass migration.
    Bazazi S; Romanczuk P; Thomas S; Schimansky-Geier L; Hale JJ; Miller GA; Sword GA; Simpson SJ; Couzin ID
    Proc Biol Sci; 2011 Feb; 278(1704):356-63. PubMed ID: 20739320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From disorder to order in marching locusts.
    Buhl C; Sumpter DJ; Couzin ID; Hale JJ; Despland E; Miller ER; Simpson SJ
    Science; 2006 Jun; 312(5778):1402-6. PubMed ID: 16741126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.