BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 28189778)

  • 1. Impact of inorganic contaminants on microalgae productivity and bioremediation potential.
    Torres EM; Hess D; McNeil BT; Guy T; Quinn JC
    Ecotoxicol Environ Saf; 2017 May; 139():367-376. PubMed ID: 28189778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of Heavy Metals and Other Inorganic Contaminants on the Productivity of Microalgae.
    Napan K; Hess D; McNeil B; Quinn JC
    J Vis Exp; 2015 Jul; (101):e52936. PubMed ID: 26274060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of colour temperatures in the cultivation of Dunaliella salina and Nannochloropsis oculata in the production of lipids and carbohydrates.
    Pavón-Suriano SG; Ortega-Clemente LA; Curiel-Ramírez S; Jiménez-García MI; Pérez-Legaspi IA; Robledo-Narváez PN
    Environ Sci Pollut Res Int; 2018 Aug; 25(22):21332-21340. PubMed ID: 28741207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Total contents and sequential extraction of heavy metals in soils irrigated with wastewater, Akaki, Ethiopia.
    Fitamo D; Itana F; Olsson M
    Environ Manage; 2007 Feb; 39(2):178-93. PubMed ID: 17160509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The accumulation and potential ecological risk of heavy metals in microalgae from a eutrophic lake (Taihu Lake, China).
    Yuan H; Liu E; Shen J
    Environ Sci Pollut Res Int; 2015 Nov; 22(21):17123-34. PubMed ID: 26139397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sustainable sources of biomass for bioremediation of heavy metals in waste water derived from coal-fired power generation.
    Saunders RJ; Paul NA; Hu Y; de Nys R
    PLoS One; 2012; 7(5):e36470. PubMed ID: 22590550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cultivation of marine microalgae using shale gas flowback water and anaerobic digestion effluent as the cultivation medium.
    Racharaks R; Ge X; Li Y
    Bioresour Technol; 2015 Sep; 191():146-56. PubMed ID: 25989090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An oleaginous filamentous microalgae Tribonema minus exhibits high removing potential of industrial phenol contaminants.
    Cheng T; Zhang W; Zhang W; Yuan G; Wang H; Liu T
    Bioresour Technol; 2017 Aug; 238():749-754. PubMed ID: 28526282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-EPA Biomass from Nannochloropsis salina Cultivated in a Flat-Panel Photo-Bioreactor on a Process Water-Enriched Growth Medium.
    Safafar H; Hass MZ; Møller P; Holdt SL; Jacobsen C
    Mar Drugs; 2016 Jul; 14(8):. PubMed ID: 27483291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global evaluation of biofuel potential from microalgae.
    Moody JW; McGinty CM; Quinn JC
    Proc Natl Acad Sci U S A; 2014 Jun; 111(23):8691-6. PubMed ID: 24912176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth and heavy metals accumulation potential of microalgae grown in sewage wastewater and petrochemical effluents.
    Ajayan KV; Selvaraju M; Thirugnanamoorthy K
    Pak J Biol Sci; 2011 Aug; 14(16):805-11. PubMed ID: 22545355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microalgae as sustainable renewable energy feedstock for biofuel production.
    Medipally SR; Yusoff FM; Banerjee S; Shariff M
    Biomed Res Int; 2015; 2015():519513. PubMed ID: 25874216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategic growth of limnic green microalgae with phycoremediation potential for enhanced production of biomass and biomolecules for sustainable environment.
    Sureshkumar P; Thomas J
    Environ Sci Pollut Res Int; 2019 Dec; 26(34):34702-34712. PubMed ID: 30613879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and validation of a screening procedure of microalgae for biodiesel production: application to the genus of marine microalgae Nannochloropsis.
    Taleb A; Pruvost J; Legrand J; Marec H; Le-Gouic B; Mirabella B; Legeret B; Bouvet S; Peltier G; Li-Beisson Y; Taha S; Takache H
    Bioresour Technol; 2015 Feb; 177():224-32. PubMed ID: 25496942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seasonal variation of heavy metals in water and sediments in the Halda River, Chittagong, Bangladesh.
    Bhuyan MS; Bakar MA
    Environ Sci Pollut Res Int; 2017 Dec; 24(35):27587-27600. PubMed ID: 28980109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels.
    Markou G; Angelidaki I; Georgakakis D
    Appl Microbiol Biotechnol; 2012 Nov; 96(3):631-45. PubMed ID: 22996277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge.
    Smith SR
    Environ Int; 2009 Jan; 35(1):142-56. PubMed ID: 18691760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the potential of 9 Nannochloropsis strains for biodiesel production.
    Ma Y; Wang Z; Yu C; Yin Y; Zhou G
    Bioresour Technol; 2014 Sep; 167():503-9. PubMed ID: 25013933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heavy metal bioremediation of coal-fired flue gas using microalgae under different CO
    Aslam A; Thomas-Hall SR; Mughal T; Zaman QU; Ehsan N; Javied S; Schenk PM
    J Environ Manage; 2019 Jul; 241():243-250. PubMed ID: 31005725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioremediation of heavy metals using microalgae: Recent advances and mechanisms.
    Leong YK; Chang JS
    Bioresour Technol; 2020 May; 303():122886. PubMed ID: 32046940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.