These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 28189778)

  • 21. Removal of copper improves the lipid content in Nannochloropsis oculata culture.
    Aguilar-Ruiz RJ; Martínez-Macias MDR; Sánchez-Machado DI; López-Cervantes J; Dévora-Isiordia GE; Nateras-Ramírez O
    Environ Sci Pollut Res Int; 2020 Dec; 27(35):44195-44204. PubMed ID: 32761347
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improved aqueous extraction of microalgal lipid by combined enzymatic and thermal lysis from wet biomass of Nannochloropsis oceanica.
    Chen L; Li R; Ren X; Liu T
    Bioresour Technol; 2016 Aug; 214():138-143. PubMed ID: 27132220
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Potential of acid-tolerant microalgae, Desmodesmus sp. MAS1 and Heterochlorella sp. MAS3, in heavy metal removal and biodiesel production at acidic pH.
    Abinandan S; Subashchandrabose SR; Panneerselvan L; Venkateswarlu K; Megharaj M
    Bioresour Technol; 2019 Apr; 278():9-16. PubMed ID: 30669030
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Growth of mono- and mixed cultures of Nannochloropsis salina and Phaeodactylum tricornutum on struvite as a nutrient source.
    Davis RW; Siccardi AJ; Huysman ND; Wyatt NB; Hewson JC; Lane TW
    Bioresour Technol; 2015 Dec; 198():577-85. PubMed ID: 26433155
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heavy metal removal from acid mine drainage by calcined eggshell and microalgae hybrid system.
    Choi HJ; Lee SM
    Environ Sci Pollut Res Int; 2015 Sep; 22(17):13404-11. PubMed ID: 25940497
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Freshwater microalgae Nannochloropsis limnetica for the production of β-galactosidase from whey powder.
    Li Y; Miros S; Eckhardt HG; Blanco A; Mulcahy S; Tiwari BK; Halim R
    Sci Rep; 2024 Jun; 14(1):14346. PubMed ID: 38906947
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microalgae - A promising tool for heavy metal remediation.
    Suresh Kumar K; Dahms HU; Won EJ; Lee JS; Shin KH
    Ecotoxicol Environ Saf; 2015 Mar; 113():329-52. PubMed ID: 25528489
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of CO2 on algal growth in industrial waste water for bioenergy and bioremediation applications.
    Roberts DA; de Nys R; Paul NA
    PLoS One; 2013; 8(11):e81631. PubMed ID: 24278451
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modified conventional bioreactor for microalgae cultivation.
    Verma R; Kumar R; Mehan L; Srivastava A
    J Biosci Bioeng; 2018 Feb; 125(2):224-230. PubMed ID: 28988616
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of carbon source and light intensity on the growth and total lipid production of three microalgae under different culture conditions.
    Gim GH; Ryu J; Kim MJ; Kim PI; Kim SW
    J Ind Microbiol Biotechnol; 2016 May; 43(5):605-16. PubMed ID: 26856592
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microalgae-mediated bioremediation: current trends and opportunities-a review.
    Ali SS; Hassan LHS; El-Sheekh M
    Arch Microbiol; 2024 Jul; 206(8):343. PubMed ID: 38967670
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioremediation of Ni, Al and Pb by the living cells of a resistant strain of microalga.
    Ahmad N; Mounsef JR; Abou Tayeh J; Lteif R
    Water Sci Technol; 2020 Sep; 82(5):851-860. PubMed ID: 33031065
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microalgae to biofuels: life cycle impacts of methane production of anaerobically digested lipid extracted algae.
    Quinn JC; Hanif A; Sharvelle S; Bradley TH
    Bioresour Technol; 2014 Nov; 171():37-43. PubMed ID: 25181698
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioremediation potential of microalgae for sustainable soil treatment in India: A comprehensive review on heavy metal and pesticide contaminant removal.
    Yeheyo HA; Ealias AM; George G; Jagannathan U
    J Environ Manage; 2024 Jul; 363():121409. PubMed ID: 38861884
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metal sorption by peat and algae treated peat: kinetics and factors affecting the process.
    Lourie E; Gjengedal E
    Chemosphere; 2011 Oct; 85(5):759-64. PubMed ID: 21788059
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metal uptake capability of Cyperus articulatus L. and its role in mitigating heavy metals from contaminated wetlands.
    Galal TM; Gharib FA; Ghazi SM; Mansour KH
    Environ Sci Pollut Res Int; 2017 Sep; 24(27):21636-21648. PubMed ID: 28752307
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Valorization of biosorbent obtained from a forestry waste: Competitive adsorption, desorption and transport of Cd, Cu, Ni, Pb and Zn.
    Cutillas-Barreiro L; Paradelo R; Igrexas-Soto A; Núñez-Delgado A; Fernández-Sanjurjo MJ; Álvarez-Rodriguez E; Garrote G; Nóvoa-Muñoz JC; Arias-Estévez M
    Ecotoxicol Environ Saf; 2016 Sep; 131():118-26. PubMed ID: 27232204
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil.
    Ma Y; Oliveira RS; Nai F; Rajkumar M; Luo Y; Rocha I; Freitas H
    J Environ Manage; 2015 Jun; 156():62-9. PubMed ID: 25796039
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A screening model to predict microalgae biomass growth in photobioreactors and raceway ponds.
    Huesemann MH; Van Wagenen J; Miller T; Chavis A; Hobbs S; Crowe B
    Biotechnol Bioeng; 2013 Jun; 110(6):1583-94. PubMed ID: 23280255
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microalgal lipids biochemistry and biotechnological perspectives.
    Bellou S; Baeshen MN; Elazzazy AM; Aggeli D; Sayegh F; Aggelis G
    Biotechnol Adv; 2014 Dec; 32(8):1476-93. PubMed ID: 25449285
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.