These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 28189878)

  • 1. Accelerated redox reaction between chromate and phenolic pollutants during freezing.
    Ju J; Kim J; Vetráková Ľ; Seo J; Heger D; Lee C; Yoon HI; Kim K; Kim J
    J Hazard Mater; 2017 May; 329():330-338. PubMed ID: 28189878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Freezing-enhanced reduction of chromate by nitrite.
    Kim K; Chung HY; Ju J; Kim J
    Sci Total Environ; 2017 Jul; 590-591():107-113. PubMed ID: 28262362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced redox conversion of chromate and arsenite in ice.
    Kim K; Choi W
    Environ Sci Technol; 2011 Mar; 45(6):2202-8. PubMed ID: 21344900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of oxalic acid on Cr(VI) reduction by phenols in ice.
    Wang N; Zhong Y; Kang C; Tian T; Wang Y; Xiao K; Shang D
    Environ Sci Pollut Res Int; 2019 Oct; 26(29):29780-29788. PubMed ID: 31402437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Freezing-Induced Simultaneous Reduction of Chromate and Production of Molecular Iodine: Mechanism, Kinetics, and Practical Implications.
    Kim K; Chung HY; Kim B; Wong G; Nguyen AQK; Kim S; Kim J
    Environ Sci Technol; 2020 Dec; 54(24):16204-16211. PubMed ID: 33125224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reductive transformation of hexavalent chromium by ferrous ions in a frozen environment: Mechanism, kinetics, and environmental implications.
    Nguyen QA; Kim B; Chung HY; Nguyen AQK; Kim J; Kim K
    Ecotoxicol Environ Saf; 2021 Jan; 208():111735. PubMed ID: 33396064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accelerated chromate reduction by tea waste: Comparison of chromate reduction properties between water and ice systems.
    Han TU; Kim J; Kim K
    Environ Res; 2021 Jun; 197():111059. PubMed ID: 33766568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Removal of Hexavalent Chromium in the Presence of H2O2 in Frozen Aqueous Solutions.
    Kim K; Kim J; Bokare AD; Choi W; Yoon HI; Kim J
    Environ Sci Technol; 2015 Sep; 49(18):10937-44. PubMed ID: 26317508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromate-induced activation of hydrogen peroxide for oxidative degradation of aqueous organic pollutants.
    Bokare AD; Choi W
    Environ Sci Technol; 2010 Oct; 44(19):7232-7. PubMed ID: 20408538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Homogeneous photocatalytic Fe
    Kim DH; Lee D; Monllor-Satoca D; Kim K; Lee W; Choi W
    J Hazard Mater; 2019 Jun; 372():121-128. PubMed ID: 29631752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of Periodate by Freezing for the Degradation of Aqueous Organic Pollutants.
    Choi Y; Yoon HI; Lee C; Vetráková L; Heger D; Kim K; Kim J
    Environ Sci Technol; 2018 May; 52(9):5378-5385. PubMed ID: 29648451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advanced oxidation process based on the Cr(III)/Cr(VI) redox cycle.
    Bokare AD; Choi W
    Environ Sci Technol; 2011 Nov; 45(21):9332-8. PubMed ID: 21988604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Cr(VI) reduction and As(III) oxidation in ice phase: important role of dissolved organic matter from biochar.
    Dong X; Ma LQ; Gress J; Harris W; Li Y
    J Hazard Mater; 2014 Feb; 267():62-70. PubMed ID: 24418493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrite-Induced Activation of Iodate into Molecular Iodine in Frozen Solution.
    Kim K; Ju J; Kim B; Chung HY; Vetráková L; Heger D; Saiz-Lopez A; Choi W; Kim J
    Environ Sci Technol; 2019 May; 53(9):4892-4900. PubMed ID: 30916540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of aqueous chromate [Cr(VI)] through photocatalysis by using TiO2-coated silica granules.
    Saeki K; Kadono M; Nabeshima A
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(3):275-81. PubMed ID: 20390868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous redox conversion of chromium(VI) and arsenic(III) under acidic conditions.
    Wang Z; Bush RT; Sullivan LA; Liu J
    Environ Sci Technol; 2013 Jun; 47(12):6486-92. PubMed ID: 23692180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of peroxymonosulfate by bicarbonate and acceleration of the reaction by freezing.
    Ahn YY; Kim J; Kim K
    Sci Total Environ; 2021 Sep; 785():147369. PubMed ID: 33957601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction of Cr(VI) by caffeic acid.
    Deiana S; Premoli A; Senette C
    Chemosphere; 2007 May; 67(10):1919-26. PubMed ID: 17240421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of synchrotron XANES and Cr-doped coal to further confirm the vaporization of organically bound Cr and the formation of chromium(VI) during coal oxy-fuel combustion.
    Chen J; Jiao F; Zhang L; Yao H; Ninomiya Y
    Environ Sci Technol; 2012 Mar; 46(6):3567-73. PubMed ID: 22397359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupled redox transformation of chromate and arsenite on ferrihydrite.
    Cerkez EB; Bhandari N; Reeder RJ; Strongin DR
    Environ Sci Technol; 2015 Mar; 49(5):2858-66. PubMed ID: 25658969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.