BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 28190054)

  • 1. Phosphorus-31 Magnetic Resonance Spectroscopy: A Tool for Measuring In Vivo Mitochondrial Oxidative Phosphorylation Capacity in Human Skeletal Muscle.
    Kumar V; Chang H; Reiter DA; Bradley DP; Belury M; McCormack SE; Raman SV
    J Vis Exp; 2017 Jan; (119):. PubMed ID: 28190054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Muscle oxidative phosphorylation quantitation using creatine chemical exchange saturation transfer (CrCEST) MRI in mitochondrial disorders.
    DeBrosse C; Nanga RPR; Wilson N; D'Aquilla K; Elliott M; Hariharan H; Yan F; Wade K; Nguyen S; Worsley D; Parris-Skeete C; McCormick E; Xiao R; Cunningham ZZ; Fishbein L; Nathanson KL; Lynch DR; Stallings VA; Yudkoff M; Falk MJ; Reddy R; McCormack SE
    JCI Insight; 2016 Nov; 1(18):e88207. PubMed ID: 27812541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterogeneous effects of old age on human muscle oxidative capacity in vivo: a systematic review and meta-analysis.
    Fitzgerald LF; Christie AD; Kent JA
    Appl Physiol Nutr Metab; 2016 Nov; 41(11):1137-1145. PubMed ID: 27779429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorus 31 nuclear magnetic resonance spectroscopy suggests a mitochondrial defect in claudicating skeletal muscle.
    Pipinos II; Shepard AD; Anagnostopoulos PV; Katsamouris A; Boska MD
    J Vasc Surg; 2000 May; 31(5):944-52. PubMed ID: 10805885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Faster and stronger manifestation of mitochondrial diseases in skeletal muscle than in heart related to cytosolic inorganic phosphate (Pi) accumulation.
    Korzeniewski B
    J Appl Physiol (1985); 2016 Aug; 121(2):424-37. PubMed ID: 27283913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative capacity and ageing in human muscle.
    Conley KE; Jubrias SA; Esselman PC
    J Physiol; 2000 Jul; 526 Pt 1(Pt 1):203-10. PubMed ID: 10878112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accuracy and precision of quantitative 31P-MRS measurements of human skeletal muscle mitochondrial function.
    Layec G; Gifford JR; Trinity JD; Hart CR; Garten RS; Park SY; Le Fur Y; Jeong EK; Richardson RS
    Am J Physiol Endocrinol Metab; 2016 Aug; 311(2):E358-66. PubMed ID: 27302751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Capacity of oxidative phosphorylation in human skeletal muscle: new perspectives of mitochondrial physiology.
    Gnaiger E
    Int J Biochem Cell Biol; 2009 Oct; 41(10):1837-45. PubMed ID: 19467914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic 31P MR spectroscopy of plantar flexion: influence of ergometer design, magnetic field strength (3 and 7 T), and RF-coil design.
    Šedivý P; Kipfelsberger MC; Dezortová M; Krššák M; Drobný M; Chmelík M; Rydlo J; Trattnig S; Hájek M; Valkovič L
    Med Phys; 2015 Apr; 42(4):1678-89. PubMed ID: 25832057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficiency of oxidative work performance of skeletal muscle in patients with cystic fibrosis.
    de Meer K; Jeneson JA; Gulmans VA; van der Laag J; Berger R
    Thorax; 1995 Sep; 50(9):980-3. PubMed ID: 8539680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cardiovascular Health and Mitochondrial Function: Testing an Association.
    Zampino M; Spencer RG; Fishbein KW; Simonsick EM; Ferrucci L
    J Gerontol A Biol Sci Med Sci; 2021 Jan; 76(2):361-367. PubMed ID: 33249505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simvastatin effects on skeletal muscle: relation to decreased mitochondrial function and glucose intolerance.
    Larsen S; Stride N; Hey-Mogensen M; Hansen CN; Bang LE; Bundgaard H; Nielsen LB; Helge JW; Dela F
    J Am Coll Cardiol; 2013 Jan; 61(1):44-53. PubMed ID: 23287371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo magnetic resonance spectroscopy of brain and muscle in a type of mitochondrial encephalomyopathy (MERRF).
    Matthews PM; Berkovic SF; Shoubridge EA; Andermann F; Karpati G; Carpenter S; Arnold DL
    Ann Neurol; 1991 Apr; 29(4):435-8. PubMed ID: 1929212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Resolution FluoRespirometry and OXPHOS Protocols for Human Cells, Permeabilized Fibers from Small Biopsies of Muscle, and Isolated Mitochondria.
    Doerrier C; Garcia-Souza LF; Krumschnabel G; Wohlfarter Y; Mészáros AT; Gnaiger E
    Methods Mol Biol; 2018; 1782():31-70. PubMed ID: 29850993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skeletal muscle metabolism during exercise and recovery in patients with respiratory failure.
    Thompson CH; Davies RJ; Kemp GJ; Taylor DJ; Radda GK; Rajagopalan B
    Thorax; 1993 May; 48(5):486-90. PubMed ID: 8322233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased substrate oxidation and mitochondrial uncoupling in skeletal muscle of endurance-trained individuals.
    Befroy DE; Petersen KF; Dufour S; Mason GF; Rothman DL; Shulman GI
    Proc Natl Acad Sci U S A; 2008 Oct; 105(43):16701-6. PubMed ID: 18936488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of human mitochondrial myopathies by phosphorus magnetic resonance spectroscopy.
    Arnold DL; Taylor DJ; Radda GK
    Ann Neurol; 1985 Aug; 18(2):189-96. PubMed ID: 4037759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle mitochondrial function in patients with type 2 diabetes mellitus and peripheral arterial disease: implications in vascular surgery.
    Pedersen BL; Baekgaard N; Quistorff B
    Eur J Vasc Endovasc Surg; 2009 Sep; 38(3):356-64. PubMed ID: 19524462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased intramyocellular lipids but unaltered in vivo mitochondrial oxidative phosphorylation in skeletal muscle of adipose triglyceride lipase-deficient mice.
    Nunes PM; van de Weijer T; Veltien A; Arnts H; Hesselink MK; Glatz JF; Schrauwen P; Tack CJ; Heerschap A
    Am J Physiol Endocrinol Metab; 2012 Jul; 303(1):E71-81. PubMed ID: 22496349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Skeletal muscle bioenergetics during all-out exercise: mechanistic insight into the oxygen uptake slow component and neuromuscular fatigue.
    Broxterman RM; Layec G; Hureau TJ; Amann M; Richardson RS
    J Appl Physiol (1985); 2017 May; 122(5):1208-1217. PubMed ID: 28209743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.