BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 28190170)

  • 1. Thirty-degree shift in optimum temperature of a thermophilic lipase by a single-point mutation: effect of serine to threonine mutation on structural flexibility.
    Sharma M; Kumar R; Singh R; Kaur J
    Mol Cell Biochem; 2017 Jun; 430(1-2):21-30. PubMed ID: 28190170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combinatorial reshaping of a lipase structure for thermostability: additive role of surface stabilizing single point mutations.
    Kumar R; Singh R; Kaur J
    Biochem Biophys Res Commun; 2014 May; 447(4):626-32. PubMed ID: 24751523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unscrambling thermal stability and temperature adaptation in evolved variants of a cold-active lipase.
    Gatti-Lafranconi P; Caldarazzo SM; Villa A; Alberghina L; Lotti M
    FEBS Lett; 2008 Jun; 582(15):2313-8. PubMed ID: 18534193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering of Bacillus lipase by directed evolution for enhanced thermal stability: effect of isoleucine to threonine mutation at protein surface.
    Khurana J; Singh R; Kaur J
    Mol Biol Rep; 2011 Jun; 38(5):2919-26. PubMed ID: 20127521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disruption of N terminus long range non covalent interactions shifted temp.opt 25°C to cold: Evolution of point mutant Bacillus lipase by error prone PCR.
    Goomber S; Kumar A; Kaur J
    Gene; 2016 Jan; 576(1 Pt 2):237-43. PubMed ID: 26456196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Point mutation Gln121-Arg increased temperature optima of Bacillus lipase (1.4 subfamily) by fifteen degrees.
    Goomber S; Kumar R; Singh R; Mishra N; Kaur J
    Int J Biol Macromol; 2016 Jul; 88():507-14. PubMed ID: 27083848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cold adaptation of a mesophilic subtilisin-like protease by laboratory evolution.
    Wintrode PL; Miyazaki K; Arnold FH
    J Biol Chem; 2000 Oct; 275(41):31635-40. PubMed ID: 10906329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Enhanced thermostability of Rhizopus chinensis lipase by error-prone PCR].
    Wang R; Yu X; Xu Y
    Sheng Wu Gong Cheng Xue Bao; 2013 Dec; 29(12):1753-64. PubMed ID: 24660623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directed evolution study of temperature adaptation in a psychrophilic enzyme.
    Miyazaki K; Wintrode PL; Grayling RA; Rubingh DN; Arnold FH
    J Mol Biol; 2000 Apr; 297(4):1015-26. PubMed ID: 10736234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Point Mutation Ile137-Met Near Surface Conferred Psychrophilic Behaviour and Improved Catalytic Efficiency to Bacillus Lipase of 1.4 Subfamily.
    Goomber S; Kumar A; Singh R; Kaur J
    Appl Biochem Biotechnol; 2016 Feb; 178(4):753-65. PubMed ID: 26520838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of low-temperature caseinolytic activity of a thermophilic subtilase by directed evolution and site-directed mutagenesis.
    Zhong CQ; Song S; Fang N; Liang X; Zhu H; Tang XF; Tang B
    Biotechnol Bioeng; 2009 Dec; 104(5):862-70. PubMed ID: 19609954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystallization and preliminary X-ray crystallographic investigations on several thermostable forms of a Bacillus subtilis lipase.
    Rajakumara E; Acharya P; Ahmad S; Shanmugam VM; Rao NM; Sankaranarayanan R
    Acta Crystallogr D Biol Crystallogr; 2004 Jan; 60(Pt 1):160-2. PubMed ID: 14684916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Effects of One Amino Acid Substitutions at the C-Terminal Region of Thermostable L2 Lipase by Computational and Experimental Approach.
    Sani HA; Shariff FM; Rahman RNZRA; Leow TC; Salleh AB
    Mol Biotechnol; 2018 Jan; 60(1):1-11. PubMed ID: 29058211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Knowledge-guided laboratory evolution of protein thermolability.
    Reetz MT; Soni P; Fernández L
    Biotechnol Bioeng; 2009 Apr; 102(6):1712-7. PubMed ID: 19072845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved activity and thermostability of Bacillus pumilus lipase by directed evolution.
    Akbulut N; Tuzlakoğlu Öztürk M; Pijning T; İşsever Öztürk S; Gümüşel F
    J Biotechnol; 2013 Mar; 164(1):123-9. PubMed ID: 23313890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Point mutation Arg153-His at surface of Bacillus lipase contributing towards increased thermostability and ester synthesis: insight into molecular network.
    Chopra N; Kaur J
    Mol Cell Biochem; 2018 Jun; 443(1-2):159-168. PubMed ID: 29086164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Increasing activity of Rhizopus chinensis CCTCC M201021 lipase by directed evolution-error prone PCR].
    Wang R; Yu X; Sha C; Xu Y
    Sheng Wu Gong Cheng Xue Bao; 2009 Dec; 25(12):1892-9. PubMed ID: 20352965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Introducing a salt bridge into the lipase of Stenotrophomonas maltophilia results in a very large increase in thermal stability.
    Wu JP; Li M; Zhou Y; Yang LR; Xu G
    Biotechnol Lett; 2015 Feb; 37(2):403-7. PubMed ID: 25257598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Residue Tyr224 is critical for the thermostability of Geobacillus sp. RD-2 lipase.
    Wu L; Liu B; Hong Y; Sheng D; Shen Y; Ni J
    Biotechnol Lett; 2010 Jan; 32(1):107-12. PubMed ID: 19763406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering of a metagenome derived lipase toward thermal tolerance: effect of asparagine to lysine mutation on the protein surface.
    Sharma PK; Kumar R; Kumar R; Mohammad O; Singh R; Kaur J
    Gene; 2012 Jan; 491(2):264-71. PubMed ID: 22001407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.