BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 28190170)

  • 21. Improving tolerance of Candida antarctica lipase B towards irreversible thermal inactivation through directed evolution.
    Zhang N; Suen WC; Windsor W; Xiao L; Madison V; Zaks A
    Protein Eng; 2003 Aug; 16(8):599-605. PubMed ID: 12968077
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Insight into Improved Thermostability of Cold-Adapted Staphylococcal Lipase by Glycine to Cysteine Mutation.
    Veno J; Rahman RNZRA; Masomian M; Ali MSM; Kamarudin NHA
    Molecules; 2019 Aug; 24(17):. PubMed ID: 31480403
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stability curves of laboratory evolved thermostable mutants of a Bacillus subtilis lipase.
    Kamal MZ; Ahmad S; Yedavalli P; Rao NM
    Biochim Biophys Acta; 2010 Sep; 1804(9):1850-6. PubMed ID: 20599630
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Engineering lipases for temperature adaptation: Structure function correlation.
    Kumar R; Goomber S; Kaur J
    Biochim Biophys Acta Proteins Proteom; 2019 Nov; 1867(11):140261. PubMed ID: 31401312
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Engineering of Pseudomonas aeruginosa lipase by directed evolution for enhanced amidase activity: mechanistic implication for amide hydrolysis by serine hydrolases.
    Nakagawa Y; Hasegawa A; Hiratake J; Sakata K
    Protein Eng Des Sel; 2007 Jul; 20(7):339-46. PubMed ID: 17616559
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Zinc in lipase L1 from Geobacillus stearothermophilus L1 and structural implications on thermal stability.
    Choi WC; Kim MH; Ro HS; Ryu SR; Oh TK; Lee JK
    FEBS Lett; 2005 Jun; 579(16):3461-6. PubMed ID: 15949807
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhancing activity and thermostability of lipase A from Serratia marcescens by site-directed mutagenesis.
    Mohammadi M; Sepehrizadeh Z; Ebrahim-Habibi A; Shahverdi AR; Faramarzi MA; Setayesh N
    Enzyme Microb Technol; 2016 Nov; 93-94():18-28. PubMed ID: 27702479
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetic studies of Gly28:Ser mutant form of Bacillus pumilus lipase: changes in k(cat) and thermal dependence.
    Bustos-Jaimes I; Mora-Lugo R; Calcagno ML; Farrés A
    Biochim Biophys Acta; 2010 Dec; 1804(12):2222-7. PubMed ID: 20831908
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evolution of stability in a cold-active enzyme elicits specificity relaxation and highlights substrate-related effects on temperature adaptation.
    Gatti-Lafranconi P; Natalello A; Rehm S; Doglia SM; Pleiss J; Lotti M
    J Mol Biol; 2010 Jan; 395(1):155-66. PubMed ID: 19850050
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Activity enhancement of Candida antarctica lipase B by flexibility modulation in helix region surrounding the active site.
    Hong SY; Yoo YJ
    Appl Biochem Biotechnol; 2013 Jun; 170(4):925-33. PubMed ID: 23625607
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rational design of K173A substitution enhances thermostability coupled with catalytic activity of Enterobacter sp. Bn12 lipase.
    Farrokh P; Yakhchali B; Karkhane AA
    J Mol Microbiol Biotechnol; 2014; 24(4):262-9. PubMed ID: 25277599
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vitro evolved non-aggregating and thermostable lipase: structural and thermodynamic investigation.
    Kamal MZ; Ahmad S; Molugu TR; Vijayalakshmi A; Deshmukh MV; Sankaranarayanan R; Rao NM
    J Mol Biol; 2011 Oct; 413(3):726-41. PubMed ID: 21925508
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Directed evolution of lipase of Bacillus pumilus YZ02 by error-prone PCR].
    Huang Y; Cai Y; Yang J; Yan Y
    Sheng Wu Gong Cheng Xue Bao; 2008 Mar; 24(3):445-51. PubMed ID: 18589821
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Relation Between Lipase Thermostability and Dynamics of Hydrogen Bond and Hydrogen Bond Network Based on Long Time Molecular Dynamics Simulation.
    Zhang L; Ding Y
    Protein Pept Lett; 2017; 24(7):643-648. PubMed ID: 28464764
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Establishment and application of a modified membrane-blot assay for Rhizomucor miehei lipases aimed at improving their methanol tolerance and thermostability.
    He D; Luo W; Wang Z; Lv P; Yuan Z; Huang S; Xv J
    Enzyme Microb Technol; 2017 Jul; 102():35-40. PubMed ID: 28465058
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phenylalanine to leucine point mutation in oxyanion hole improved catalytic efficiency of Lip12 from Yarrowia lipolytica.
    Kumari A; Gupta R
    Enzyme Microb Technol; 2013 Dec; 53(6-7):386-90. PubMed ID: 24315641
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impact of the tryptophan residues of Humicola lanuginosa lipase on its thermal stability.
    Zhu K; Jutila A; Tuominen EK; Patkar SA; Svendsen A; Kinnunen PK
    Biochim Biophys Acta; 2001 Jun; 1547(2):329-38. PubMed ID: 11410289
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improvement of the optimum temperature of lipase activity for Rhizopus niveus by random mutagenesis and its structural interpretation.
    Kohno M; Enatsu M; Funatsu J; Yoshiizumi M; Kugimiya W
    J Biotechnol; 2001 May; 87(3):203-10. PubMed ID: 11334664
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Increasing the stability of an enzyme toward hostile organic solvents by directed evolution based on iterative saturation mutagenesis using the B-FIT method.
    Reetz MT; Soni P; Fernández L; Gumulya Y; Carballeira JD
    Chem Commun (Camb); 2010 Dec; 46(45):8657-8. PubMed ID: 20957255
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Involvement of Gly 311 residue on substrate discrimination, pH and temperature dependency of recombinant Staphylococcus xylosus lipase: a study with emulsified substrate.
    Mosbah H; Sayari A; Horchani H; Gargouri Y
    Protein Expr Purif; 2007 Sep; 55(1):31-9. PubMed ID: 17521919
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.