These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 28190170)

  • 41. Enhancement of the efficiency of secretion of heterologous lipase in Escherichia coli by directed evolution of the ABC transporter system.
    Eom GT; Song JK; Ahn JH; Seo YS; Rhee JS
    Appl Environ Microbiol; 2005 Jul; 71(7):3468-74. PubMed ID: 16000750
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hydrophobic substitution of surface residues affects lipase stability in organic solvents.
    Monsef Shokri M; Ahmadian S; Akbari N; Khajeh K
    Mol Biotechnol; 2014 Apr; 56(4):360-8. PubMed ID: 24146432
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Amino acid residues involved in organic solvent-stability of the LST-03 lipase.
    Kawata T; Ogino H
    Biochem Biophys Res Commun; 2010 Sep; 400(3):384-8. PubMed ID: 20800576
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structural basis for the remarkable stability of Bacillus subtilis lipase (Lip A) at low pH.
    Rajakumara E; Acharya P; Ahmad S; Sankaranaryanan R; Rao NM
    Biochim Biophys Acta; 2008 Feb; 1784(2):302-11. PubMed ID: 18053819
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Selective disruption of disulphide bonds lowered activation energy and improved catalytic efficiency in TALipB from Trichosporon asahii MSR54: MD simulations revealed flexible lid and extended substrate binding area in the mutant.
    Singh Y; Gupta N; Verma VV; Goel M; Gupta R
    Biochem Biophys Res Commun; 2016 Mar; 472(1):223-30. PubMed ID: 26930469
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Improving on nature's shortcomings: evolving a lipase for increased lipolytic activity, expression and thermostability.
    Alfaro-Chávez AL; Liu JW; Porter JL; Goldman A; Ollis DL
    Protein Eng Des Sel; 2019 Sep; 32(1):13-24. PubMed ID: 31403166
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structural basis of selection and thermostability of laboratory evolved Bacillus subtilis lipase.
    Acharya P; Rajakumara E; Sankaranarayanan R; Rao NM
    J Mol Biol; 2004 Aug; 341(5):1271-81. PubMed ID: 15321721
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Improvement of the the thermostability of Penicillium expansum lipase by mutagenesis the random mutant ep8 at K55R].
    Cai SL; Lin JH; Wang CM; Lin L
    Sheng Wu Gong Cheng Xue Bao; 2007 Jul; 23(4):677-80. PubMed ID: 17822043
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Thermostable Bacillus subtilis lipases: in vitro evolution and structural insight.
    Ahmad S; Kamal MZ; Sankaranarayanan R; Rao NM
    J Mol Biol; 2008 Aug; 381(2):324-40. PubMed ID: 18599073
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Just an additional hydrogen bond can dramatically reduce the catalytic activity of Bacillus subtilis lipase A I12T mutant: an integration of computational modeling and experimental analysis.
    Ni Z; Jin R; Chen H; Lin X
    Comput Biol Med; 2013 Nov; 43(11):1882-8. PubMed ID: 24209933
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterization and a point mutational approach of a psychrophilic lipase from an arctic bacterium, Bacillus pumilus.
    Wi AR; Jeon SJ; Kim S; Park HJ; Kim D; Han SJ; Yim JH; Kim HW
    Biotechnol Lett; 2014 Jun; 36(6):1295-302. PubMed ID: 24563306
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Engineering lipase A from mesophilic Bacillus subtilis for activity at low temperatures.
    Kumar V; Yedavalli P; Gupta V; Rao NM
    Protein Eng Des Sel; 2014 Mar; 27(3):73-82. PubMed ID: 24402332
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Screening for mutants with thermostabe lipase A from Burkholderia sp. ZYB002].
    Liu Y; Qiu L; Huang J; Zhao B; Wang Z; Zhu X; Gao Y; Shu Z
    Wei Sheng Wu Xue Bao; 2015 Jun; 55(6):748-54. PubMed ID: 26563000
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structural features of a cold-adapted Alaskan bacterial lipase.
    Roy D; Sengupta S
    J Biomol Struct Dyn; 2007 Apr; 24(5):463-70. PubMed ID: 17313191
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Improved thermostability of lipase B from Candida antarctica by directed evolution and display on yeast surface.
    Peng XQ
    Appl Biochem Biotechnol; 2013 Jan; 169(2):351-8. PubMed ID: 23188656
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Unscrambling the effect of C-terminal tail deletion on the stability of a cold-adapted, organic solvent stable lipase from Staphylococcus epidermidis AT2.
    Kamarudin NH; Rahman RN; Ali MS; Leow TC; Basri M; Salleh AB
    Mol Biotechnol; 2014 Aug; 56(8):747-57. PubMed ID: 24771007
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enhanced activity of Rhizomucor miehei lipase by directed evolution with simultaneous evolution of the propeptide.
    Wang J; Wang D; Wang B; Mei ZH; Liu J; Yu HW
    Appl Microbiol Biotechnol; 2012 Oct; 96(2):443-50. PubMed ID: 22584429
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modification of pancreatic lipase properties by directed molecular evolution.
    Colin DY; Deprez-Beauclair P; Silva N; Infantes L; Kerfelec B
    Protein Eng Des Sel; 2010 May; 23(5):365-73. PubMed ID: 20150178
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Cloning, expression, directed evolution in vitro and structural simulation of β-glycosidase from Bacillus subtilis].
    Liu Z; Chen Q; Chen Y; Wang Z; Zhu Q; Shi X
    Wei Sheng Wu Xue Bao; 2015 Oct; 55(10):1273-83. PubMed ID: 26939455
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Directed evolution of a thermophilic beta-glucosidase for cellulosic bioethanol production.
    Hardiman E; Gibbs M; Reeves R; Bergquist P
    Appl Biochem Biotechnol; 2010 May; 161(1-8):301-12. PubMed ID: 19834652
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.