These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 28190844)

  • 1. Sensitive and Simple Detection of Glucose Based on Single Plasmonic Nanorod.
    Xu G; Zhu Y; Pang J
    Anal Sci; 2017; 33(2):223-227. PubMed ID: 28190844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gold nanorods etching-based plasmonic immunoassay for qualitative and quantitative detection of aflatoxin M1 in milk.
    Fang B; Xu S; Huang Y; Su F; Huang Z; Fang H; Peng J; Xiong Y; Lai W
    Food Chem; 2020 Nov; 329():127160. PubMed ID: 32485646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic plasmonic engineering of Ag/Au bimetallic nanoshells and their use for sensitive optical glucose sensing.
    He H; Xu X; Wu H; Jin Y
    Adv Mater; 2012 Apr; 24(13):1736-40. PubMed ID: 22388952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme-guided plasmonic biosensor based on dual-functional nanohybrid for sensitive detection of thrombin.
    Yan J; Wang L; Tang L; Lin L; Liu Y; Li J
    Biosens Bioelectron; 2015 Aug; 70():404-10. PubMed ID: 25845332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly sensitive glucose biosensor based on Au-Ni coaxial nanorod array having high aspect ratio.
    Hsu CW; Wang GJ
    Biosens Bioelectron; 2014 Jun; 56():204-9. PubMed ID: 24495482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Label-free plasmonic detection of biomolecular binding by a single gold nanorod.
    Nusz GJ; Marinakos SM; Curry AC; Dahlin A; Höök F; Wax A; Chilkoti A
    Anal Chem; 2008 Feb; 80(4):984-9. PubMed ID: 18197636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced resonance light scattering based on biocatalytic growth of gold nanoparticles for biosensors design.
    Shang L; Chen H; Deng L; Dong S
    Biosens Bioelectron; 2008 Feb; 23(7):1180-4. PubMed ID: 18068347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid integrated plasmonic-photonic waveguides for on-chip localized surface plasmon resonance (LSPR) sensing and spectroscopy.
    Chamanzar M; Xia Z; Yegnanarayanan S; Adibi A
    Opt Express; 2013 Dec; 21(26):32086-98. PubMed ID: 24514803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward ultrasensitive and fast colorimetric detection of indoor formaldehyde across the visible region using cetyltrimethylammonium chloride-capped bone-shaped gold nanorods as "chromophores".
    Duan W; Liu A; Li Q; Li Z; Wen CY; Cai Z; Tang S; Li X; Zeng J
    Analyst; 2019 Aug; 144(15):4582-4588. PubMed ID: 31236555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A highly sensitive and widely adaptable plasmonic aptasensor using berberine for small-molecule detection.
    Park JH; Byun JY; Jang H; Hong D; Kim MG
    Biosens Bioelectron; 2017 Nov; 97():292-298. PubMed ID: 28618365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic detection of a model analyte in serum by a gold nanorod sensor.
    Marinakos SM; Chen S; Chilkoti A
    Anal Chem; 2007 Jul; 79(14):5278-83. PubMed ID: 17567106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly sensitive colorimetric detection of glucose in a serum based on DNA-embeded Au@Ag core-shell nanoparticles.
    Kang F; Hou X; Xu K
    Nanotechnology; 2015 Oct; 26(40):405707. PubMed ID: 26376788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reliable Sensing Platform for Plasmonic Enzyme-Linked Immunosorbent Assays Based on Automatic Flow-Based Methodology.
    Kaewwonglom N; Oliver M; Cocovi-Solberg DJ; Zirngibl K; Knopp D; Jakmunee J; Miró M
    Anal Chem; 2019 Oct; 91(20):13260-13267. PubMed ID: 31498612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dark-field microscopy in imaging of plasmon resonant nanoparticles.
    Liu M; Chao J; Deng S; Wang K; Li K; Fan C
    Colloids Surf B Biointerfaces; 2014 Dec; 124():111-7. PubMed ID: 25009105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasensitive MicroRNA Assay via Surface Plasmon Resonance Responses of Au@Ag Nanorods Etching.
    Gu Y; Song J; Li MX; Zhang TT; Zhao W; Xu JJ; Liu M; Chen HY
    Anal Chem; 2017 Oct; 89(19):10585-10591. PubMed ID: 28872300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanostructure shape effects on response of plasmonic aptamer sensors.
    Balamurugan S; Mayer KM; Lee S; Soper SA; Hafner JH; Spivak DA
    J Mol Recognit; 2013 Sep; 26(9):402-7. PubMed ID: 23836467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod.
    Zijlstra P; Paulo PM; Orrit M
    Nat Nanotechnol; 2012 Apr; 7(6):379-82. PubMed ID: 22504707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA methylation detection with end-to-end nanorod assembly-enhanced surface plasmon resonance.
    Li X; Song T; Guo X
    Analyst; 2015 Sep; 140(18):6230-3. PubMed ID: 26238553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amplification of localized surface plasmon resonance signals by a gold nanorod assembly and ultra-sensitive detection of mercury.
    Huang H; Qu C; Liu X; Huang S; Xu Z; Zhu Y; Chu PK
    Chem Commun (Camb); 2011 Jun; 47(24):6897-9. PubMed ID: 21603718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface-Plasmon-Coupled Fluorescence Enhancement Based on Ordered Gold Nanorod Array Biochip for Ultrasensitive DNA Analysis.
    Mei Z; Tang L
    Anal Chem; 2017 Jan; 89(1):633-639. PubMed ID: 27991768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.