These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 2819096)

  • 1. Characterization by Hg2+ of two different pathways for mitochondrial Ca2+ release.
    Chávez E; Zazueta C; Díaz E; Holquín JA
    Biochim Biophys Acta; 1989 Nov; 986(1):27-32. PubMed ID: 2819096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial calcium release as induced by Hg2+.
    Chávez E; Holguín JA
    J Biol Chem; 1988 Mar; 263(8):3582-7. PubMed ID: 3346209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of Ca2+ transport in Euglena gracilis mitochondria.
    Uribe A; Chávez E; Jiménez M; Zazueta C; Moreno-Sánchez R
    Biochim Biophys Acta; 1994 Jun; 1186(1-2):107-16. PubMed ID: 7516710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Hg2+ and CH3Hg+ on Ca2+ fluxes in rat brain microsomes.
    Freitas AJ; Rocha JB; Wolosker H; Souza DO
    Brain Res; 1996 Nov; 738(2):257-64. PubMed ID: 8955521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential role of mitochondrial calcium metabolism during reperfusion injury.
    Vlessis AA; Mela-Riker L
    Am J Physiol; 1989 Jun; 256(6 Pt 1):C1196-206. PubMed ID: 2735395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modifications of Ca2+ signaling by inorganic mercury in PC12 cells.
    Rossi AD; Larsson O; Manzo L; Orrenius S; Vahter M; Berggren PO; Nicotera P
    FASEB J; 1993 Dec; 7(15):1507-14. PubMed ID: 8262335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of cations on the blue to purple transition of bacteriorhodopsin. Comparison of Ca2+ and Hg2+ binding and their effect on the surface potential.
    Duñach M; Seigneuret M; Rigaud JL; Padrós E
    J Biol Chem; 1988 Nov; 263(33):17378-84. PubMed ID: 3182851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extensive Ca2+ release from energized mitochondria induced by disulfiram.
    Chávez E; Zazueta C; Bravo C
    J Bioenerg Biomembr; 1989 Jun; 21(3):335-45. PubMed ID: 2545669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dicyclohexylcarbodiimide as inducer of mitochondrial Ca2+ release.
    Chávez E; Zazueta C; Díaz E
    J Bioenerg Biomembr; 1990 Oct; 22(5):679-89. PubMed ID: 2249979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of palmitate/Ca2+(Sr2+)-induced pore in the cycling of ions across the mitochondrial membrane.
    Mironova GD; Saris NE; Belosludtseva NV; Agafonov AV; Elantsev AB; Belosludtsev KN
    Biochim Biophys Acta; 2015 Feb; 1848(2):488-95. PubMed ID: 25450352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Release of Ca2+ from heart and kidney mitochondria by peripheral-type benzodiazepine receptor ligands.
    Moreno-Sánchez R; Bravo C; Gutiérrez J; Newman AH; Chiang PK
    Int J Biochem; 1991; 23(2):207-13. PubMed ID: 1847885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mercury-induced Ca2+ increase and cytotoxicity in renal tubular cells.
    Yeh JH; Chung HM; Ho CM; Jan CR
    Life Sci; 2004 Mar; 74(16):2075-83. PubMed ID: 14967201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulphydryl reagents trigger Ca2+ release from the sarcoplasmic reticulum of skinned rabbit psoas fibres.
    Salama G; Abramson JJ; Pike GK
    J Physiol; 1992 Aug; 454():389-420. PubMed ID: 1335505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial bioenergetics during the initiation of mercuric chloride-induced renal injury. I. Direct effects of in vitro mercuric chloride on renal mitochondrial function.
    Weinberg JM; Harding PG; Humes HD
    J Biol Chem; 1982 Jan; 257(1):60-7. PubMed ID: 6458618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intramitochondrial K+ as activator of carboxyatractyloside-induced Ca2+ release.
    Chávez E; Moreno-Sánchez R; Zazueta C; Reyes-Vivas H; Arteaga D
    Biochim Biophys Acta; 1991 Dec; 1070(2):461-6. PubMed ID: 1764458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative effects of methylmercury and Hg(2+) on human neuronal N- and R-type high-voltage activated calcium channels transiently expressed in human embryonic kidney 293 cells.
    Hajela RK; Peng SQ; Atchison WD
    J Pharmacol Exp Ther; 2003 Sep; 306(3):1129-36. PubMed ID: 12805476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of ruthenium red on the Ca2+ and Sr2+ efflux from rat liver mitochondria: influence of nupercaine.
    Pezzi L
    Biosci Rep; 1984 Mar; 4(3):231-7. PubMed ID: 6202338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition by Sr2+ of specific mitochondrial Ca2+-efflux pathways.
    Saris NE; Bernardi P
    Biochim Biophys Acta; 1983 Oct; 725(1):19-24. PubMed ID: 6194819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium-induced release of strontium ions from the sarcoplasmic reticulum of rat cardiac ventricular myocytes.
    Spencer CI; Berlin JR
    J Physiol; 1997 Nov; 504 ( Pt 3)(Pt 3):565-78. PubMed ID: 9401965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The regulation of brain mitochondrial calcium-ion transport. The role of ATP in the discrimination between kinetic and membrane-potential-dependent calcium-ion efflux mechanisms.
    Nicholls DG; Scott ID
    Biochem J; 1980 Mar; 186(3):833-9. PubMed ID: 7396840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.