These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 28190967)

  • 1. Seismological asperities from the point of view of dynamic rupture modeling: the 2007 Mw6.6 Chuetsu-Oki, Japan, earthquake.
    Aochi H; Yoshimi M
    J Seismol; 2016; 20(4):1089-1105. PubMed ID: 28190967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-initiation ruptures in the 2024 Noto earthquake encircling a fault asperity at a swarm edge.
    Xu L; Ji C; Meng L; Ampuero JP; Yunjun Z; Mohanna S; Aoki Y
    Science; 2024 Aug; 385(6711):871-876. PubMed ID: 39172839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Multi Record Based Artificial Near Fault Ground Motion Generation Method.
    Liu Z; Zhang S; Zhang Z
    MethodsX; 2020; 7():100725. PubMed ID: 32775221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Earthquake Shaking and Damage to Buildings: Recent evidence for severe ground shaking raises questions about the earthquake resistance of structures.
    Page RA; Joyner WB; Blume JA
    Science; 1975 Aug; 189(4203):601-8. PubMed ID: 17838741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Ionospheric view of the 2011 Tohoku-Oki earthquake seismic source: the first 60 seconds of the rupture.
    Bagiya MS; Thomas D; Astafyeva E; Bletery Q; Lognonné P; Ramesh DS
    Sci Rep; 2020 Mar; 10(1):5232. PubMed ID: 32251306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of source directivity and site effects of 2003 Tokachi-oki earthquake on the generation of high PGA in the near-fault zones.
    Pavlenko OV
    Sci Rep; 2022 Jul; 12(1):12134. PubMed ID: 35840632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stochastic coupled simulation of strong motion and tsunami for the 2011 Tohoku, Japan earthquake.
    Goda K; Petrone C; De Risi R; Rossetto T
    Stoch Environ Res Risk Assess; 2017; 31(9):2337-2355. PubMed ID: 32009849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fault stress inversion reveals seismogenic asperity of the 2011 Mw 9.0 Tohoku-Oki earthquake.
    Xie Z; Cai Y; Wang CY; Yoshioka S; Tanaka M
    Sci Rep; 2019 Aug; 9(1):11987. PubMed ID: 31427652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Weak Materials in Earthquake Rupture Dynamics.
    Hirono T; Tsuda K; Kaneki S
    Sci Rep; 2019 Apr; 9(1):6604. PubMed ID: 31036864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Upper and lower plate controls on the great 2011 Tohoku-oki earthquake.
    Liu X; Zhao D
    Sci Adv; 2018 Jun; 4(6):eaat4396. PubMed ID: 29938226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated mechanical environment of pre- and post-rupture fault and asperity origin of the 2011 giant Tohoku-Oki earthquake.
    Xie Z; Cai Y
    Sci Rep; 2022 Dec; 12(1):21211. PubMed ID: 36482173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable creeping fault segments can become destructive as a result of dynamic weakening.
    Noda H; Lapusta N
    Nature; 2013 Jan; 493(7433):518-21. PubMed ID: 23302798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial correlation assessment of multiple earthquake intensity measures using physics-based simulated ground motions.
    Zolfaghari MR; Forghani M
    Sci Rep; 2024 Sep; 14(1):21235. PubMed ID: 39261635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slip zone and energetics of a large earthquake from the Taiwan Chelungpu-fault Drilling Project.
    Ma KF; Tanaka H; Song SR; Wang CY; Hung JH; Tsai YB; Mori J; Song YF; Yeh EC; Soh W; Sone H; Kuo LW; Wu HY
    Nature; 2006 Nov; 444(7118):473-6. PubMed ID: 17122854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Earthquake slip weakening and asperities explained by thermal pressurization.
    Wibberley CA; Shimamoto T
    Nature; 2005 Aug; 436(7051):689-92. PubMed ID: 16079843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The break of earthquake asperities imaged by distributed acoustic sensing.
    Li J; Kim T; Lapusta N; Biondi E; Zhan Z
    Nature; 2023 Aug; 620(7975):800-806. PubMed ID: 37532935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Widespread ground motion distribution caused by rupture directivity during the 2015 Gorkha, Nepal earthquake.
    Koketsu K; Miyake H; Guo Y; Kobayashi H; Masuda T; Davuluri S; Bhattarai M; Adhikari LB; Sapkota SN
    Sci Rep; 2016 Jun; 6():28536. PubMed ID: 27335317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near-source high-rate GPS, strong motion and InSAR observations to image the 2015 Lefkada (Greece) Earthquake rupture history.
    Avallone A; Cirella A; Cheloni D; Tolomei C; Theodoulidis N; Piatanesi A; Briole P; Ganas A
    Sci Rep; 2017 Sep; 7(1):10358. PubMed ID: 28871096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Irregular rupture propagation and geometric fault complexities during the 2010 Mw 7.2 El Mayor-Cucapah earthquake.
    Yamashita S; Yagi Y; Okuwaki R
    Sci Rep; 2022 Mar; 12(1):4575. PubMed ID: 35301391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Consecutive ruptures on a complex conjugate fault system during the 2018 Gulf of Alaska earthquake.
    Yamashita S; Yagi Y; Okuwaki R; Shimizu K; Agata R; Fukahata Y
    Sci Rep; 2021 Mar; 11(1):5979. PubMed ID: 33727671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.