These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 28191038)

  • 21. Quantitative evaluation of ruminal methane and carbon dioxide formation from formate through C-13 stable isotope analysis in a batch culture system.
    He ZX; Qiao JY; Yan QX; Tan ZL; Wang M
    Animal; 2019 Jan; 13(1):90-97. PubMed ID: 29644945
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional and structural response of a cellulose-degrading methanogenic microbial community to multiple aeration stress at two different temperatures.
    Wu XL; Conrad R
    Environ Microbiol; 2001 Jun; 3(6):355-62. PubMed ID: 11472500
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 24. n-Butanol and ethanol production from cellulose by Clostridium cellulovorans overexpressing heterologous aldehyde/alcohol dehydrogenases.
    Bao T; Zhao J; Li J; Liu X; Yang ST
    Bioresour Technol; 2019 Aug; 285():121316. PubMed ID: 30959389
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ferredoxin-dependent methane formation from acetate in cell extracts of Methanosarcina barkeri (strain MS).
    Fischer R; Thauer RK
    FEBS Lett; 1990 Sep; 269(2):368-72. PubMed ID: 15452975
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improved
    Wen Z; Ledesma-Amaro R; Lin J; Jiang Y; Yang S
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30658972
    [No Abstract]   [Full Text] [Related]  

  • 27. Kinetic study and mathematical modeling of methanogenesis of acetate using pure cultures of methanogens.
    Yang ST; Okos MR
    Biotechnol Bioeng; 1987 Oct; 30(5):661-7. PubMed ID: 18581453
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genomically and biochemically accurate metabolic reconstruction of Methanosarcina barkeri Fusaro, iMG746.
    Gonnerman MC; Benedict MN; Feist AM; Metcalf WW; Price ND
    Biotechnol J; 2013 Sep; 8(9):1070-9. PubMed ID: 23420771
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Energetics of Growth of a Defined Mixed Culture of Desulfovibrio vulgaris and Methanosarcina barkeri: Interspecies Hydrogen Transfer in Batch and Continuous Cultures.
    Traore AS; Fardeau ML; Hatchikian CE; Le Gall J; Belaich JP
    Appl Environ Microbiol; 1983 Nov; 46(5):1152-6. PubMed ID: 16346421
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of Complex Rumen Microbiome Interaction Within Diverse Functional Niches as Mechanisms Affecting the Variation of Methane Emissions in Bovine.
    Martínez-Álvaro M; Auffret MD; Stewart RD; Dewhurst RJ; Duthie CA; Rooke JA; Wallace RJ; Shih B; Freeman TC; Watson M; Roehe R
    Front Microbiol; 2020; 11():659. PubMed ID: 32362882
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative genomics of the mesophilic cellulosome-producing Clostridium cellulovorans and its application to biofuel production via consolidated bioprocessing.
    Tamaru Y; Miyake H; Kuroda K; Ueda M; Doi RH
    Environ Technol; 2010; 31(8-9):889-903. PubMed ID: 20662379
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional organization of a single nif cluster in the mesophilic archaeon Methanosarcina mazei strain Gö1.
    Ehlers C; Veit K; Gottschalk G; Schmitz RA
    Archaea; 2002 Sep; 1(2):143-50. PubMed ID: 15803652
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simultaneous and Enhanced Production of Thermostable Amylases and Ethanol from Starch by Cocultures of Clostridium thermosulfurogenes and Clostridium thermohydrosulfuricum.
    Hyun HH; Zeikus JG
    Appl Environ Microbiol; 1985 May; 49(5):1174-81. PubMed ID: 16346791
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acetoclastic and hydrogenotrophic methane production and methanogenic populations in an acidic West-Siberian peat bog.
    Kotsyurbenko OR; Chin KJ; Glagolev MV; Stubner S; Simankova MV; Nozhevnikova AN; Conrad R
    Environ Microbiol; 2004 Nov; 6(11):1159-73. PubMed ID: 15479249
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of Organic Acid Anions on the Growth and Metabolism of Syntrophomonas wolfei in Pure Culture and in Defined Consortia.
    Beaty PS; McInerney MJ
    Appl Environ Microbiol; 1989 Apr; 55(4):977-83. PubMed ID: 16347899
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioconversion of Gelatin to Methane by a Coculture of Clostridium collagenovorans and Methanosarcina barkeri.
    Jain MK; Zeikus JG
    Appl Environ Microbiol; 1989 Feb; 55(2):366-71. PubMed ID: 16347846
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of coculture of anaerobic fungi isolated from ruminants and non-ruminants with methanogenic bacteria on cellulolytic and xylanolytic enzyme activities.
    Teunissen MJ; Kets EP; Op den Camp HJ; Huis in't Veld JH; Vogels GD
    Arch Microbiol; 1992; 157(2):176-82. PubMed ID: 1550443
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sodium ion translocation and ATP synthesis in methanogens.
    Schlegel K; Müller V
    Methods Enzymol; 2011; 494():233-55. PubMed ID: 21402218
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microbial growth by a net heat up-take: a calorimetric and thermodynamic study on acetotrophic methanogenesis by Methanosarcina barkeri.
    Liu JS; Marison IW; von Stockar U
    Biotechnol Bioeng; 2001 Oct; 75(2):170-80. PubMed ID: 11536139
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Responses of
    He P; Duan H; Han W; Liu Y; Shao L; Lü F
    Biotechnol Biofuels; 2019; 12():289. PubMed ID: 31890017
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.