These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
959 related articles for article (PubMed ID: 28191568)
1. Understanding the influence of Mg doping for the stabilization of capacity and higher discharge voltage of Li- and Mn-rich cathodes for Li-ion batteries. Nayak PK; Grinblat J; Levi E; Levi M; Markovsky B; Aurbach D Phys Chem Chem Phys; 2017 Feb; 19(8):6142-6152. PubMed ID: 28191568 [TBL] [Abstract][Full Text] [Related]
2. Remarkably Improved Electrochemical Performance of Li- and Mn-Rich Cathodes upon Substitution of Mn with Ni. Kumar Nayak P; Grinblat J; Levi E; Penki TR; Levi M; Sun YK; Markovsky B; Aurbach D ACS Appl Mater Interfaces; 2017 Feb; 9(5):4309-4319. PubMed ID: 27669499 [TBL] [Abstract][Full Text] [Related]
3. High-Capacity Layered-Spinel Cathodes for Li-Ion Batteries. Nayak PK; Levi E; Grinblat J; Levi M; Markovsky B; Munichandraiah N; Sun YK; Aurbach D ChemSusChem; 2016 Sep; 9(17):2404-13. PubMed ID: 27530465 [TBL] [Abstract][Full Text] [Related]
4. Encouraging Voltage Stability upon Long Cycling of Li-Rich Mn-Based Cathode Materials by Ta-Mo Dual Doping. Yang J; Chen Y; Li Y; Xi X; Zheng J; Zhu Y; Xiong Y; Liu S ACS Appl Mater Interfaces; 2021 Jun; 13(22):25981-25992. PubMed ID: 34039001 [TBL] [Abstract][Full Text] [Related]
5. Tuning Electrochemical Properties of Li-Rich Layered Oxide Cathodes by Adjusting Co/Ni Ratios and Mechanism Investigation Using in situ X-ray Diffraction and Online Continuous Flow Differential Electrochemical Mass Spectrometry. Shen S; Hong Y; Zhu F; Cao Z; Li Y; Ke F; Fan J; Zhou L; Wu L; Dai P; Cai M; Huang L; Zhou Z; Li J; Wu Q; Sun S ACS Appl Mater Interfaces; 2018 Apr; 10(15):12666-12677. PubMed ID: 29569902 [TBL] [Abstract][Full Text] [Related]
6. Performance improvement of Li-rich layer-structured Li(1.2)Mn(0.54)Ni(0.13)Co(0.13)O2 by integration with spinel LiNi(0.5)Mn(1.5)O4. Feng X; Yang Z; Tang D; Kong Q; Gu L; Wang Z; Chen L Phys Chem Chem Phys; 2015 Jan; 17(2):1257-64. PubMed ID: 25420544 [TBL] [Abstract][Full Text] [Related]
7. Enhanced stability of vanadium-doped Li Zhou M; Zhao J; Wang X; Shen J; Yang JL; Tang W; Deng Y; Zhao SX; Liu R RSC Adv; 2022 Nov; 12(51):32825-32833. PubMed ID: 36425168 [TBL] [Abstract][Full Text] [Related]
9. K(+)-doped Li(1.2)Mn(0.54)Co(0.13)Ni(0.13)O2: a novel cathode material with an enhanced cycling stability for lithium-ion batteries. Li Q; Li G; Fu C; Luo D; Fan J; Li L ACS Appl Mater Interfaces; 2014 Jul; 6(13):10330-41. PubMed ID: 24971575 [TBL] [Abstract][Full Text] [Related]
10. Improved Cycling Stability and Fast Charge-Discharge Performance of Cobalt-Free Lithium-Rich Oxides by Magnesium-Doping. Yi TF; Li YM; Yang SY; Zhu YR; Xie Y ACS Appl Mater Interfaces; 2016 Nov; 8(47):32349-32359. PubMed ID: 27933831 [TBL] [Abstract][Full Text] [Related]
11. Electrochemical Properties of Al Liu YC; Wu NL; Liu WR J Nanosci Nanotechnol; 2018 Jan; 18(1):68-74. PubMed ID: 29768813 [TBL] [Abstract][Full Text] [Related]
12. Nonstoichiometry of Li-rich cathode material with improved cycling ability for lithium-ion batteries. Tai Z; Li X; Zhu W; Shi M; Xin Y; Guo S; Wu Y; Chen Y; Liu Y J Colloid Interface Sci; 2020 Jun; 570():264-272. PubMed ID: 32163788 [TBL] [Abstract][Full Text] [Related]
13. Suppressing the Voltage Decay Based on a Distinct Stacking Sequence of Oxygen Atoms for Li-Rich Cathode Materials. Cao S; Wu C; Xie X; Li H; Zang Z; Li Z; Chen G; Guo X; Wang X ACS Appl Mater Interfaces; 2021 Apr; 13(15):17639-17648. PubMed ID: 33825459 [TBL] [Abstract][Full Text] [Related]
14. Impact of surface coating on electrochemical and thermal behaviors of a Li-rich Li Nisar U; Petla R; Jassim Al-Hail SA; Quddus AA; Monawwar H; Shakoor A; Essehli R; Amin R RSC Adv; 2020 Apr; 10(26):15274-15281. PubMed ID: 35495434 [TBL] [Abstract][Full Text] [Related]
15. Effects of Mg Doping at Different Positions in Li-Rich Mn-Based Cathode Material on Electrochemical Performance. Makhonina E; Pechen L; Medvedeva A; Politov Y; Rumyantsev A; Koshtyal Y; Volkov V; Goloveshkin A; Eremenko I Nanomaterials (Basel); 2022 Jan; 12(1):. PubMed ID: 35010106 [TBL] [Abstract][Full Text] [Related]
16. Enhancement of Structural, Electrochemical, and Thermal Properties of High-Energy Density Ni-Rich LiNi Levartovsky Y; Chakraborty A; Kunnikuruvan S; Maiti S; Grinblat J; Talianker M; Major DT; Aurbach D ACS Appl Mater Interfaces; 2021 Jul; 13(29):34145-34156. PubMed ID: 34256562 [TBL] [Abstract][Full Text] [Related]
17. Achieving structural stability and enhanced electrochemical performance through Nb-doping into Li- and Mn-rich layered cathode for lithium-ion batteries. Yun S; Yu J; Lee W; Lee H; Yoon WS Mater Horiz; 2023 Mar; 10(3):829-841. PubMed ID: 36597945 [TBL] [Abstract][Full Text] [Related]
18. Role of Mn content on the electrochemical properties of nickel-rich layered LiNi(0.8-x)Co(0.1)Mn(0.1+x)O₂ (0.0 ≤ x ≤ 0.08) cathodes for lithium-ion batteries. Zheng J; Kan WH; Manthiram A ACS Appl Mater Interfaces; 2015 Apr; 7(12):6926-34. PubMed ID: 25756196 [TBL] [Abstract][Full Text] [Related]
19. Effect of Al and Fe Doping on the Electrochemical Behavior of Li Medvedeva A; Makhonina E; Pechen L; Politov Y; Rumyantsev A; Koshtyal Y; Goloveshkin A; Maslakov K; Eremenko I Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431711 [TBL] [Abstract][Full Text] [Related]
20. Improvement of stability and capacity of Co-free, Li-rich layered oxide Li Cai Z; Wang S; Zhu H; Tang X; Ma Y; Yu DYW; Zhang S; Song G; Yang W; Xu Y; Wen C J Colloid Interface Sci; 2023 Jan; 630(Pt B):281-289. PubMed ID: 36327731 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]