BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 28191577)

  • 1. On the mechanism of gas adsorption for pristine, defective and functionalized graphene.
    You Y; Deng J; Tan X; Gorjizadeh N; Yoshimura M; Smith SC; Sahajwalla V; Joshi RK
    Phys Chem Chem Phys; 2017 Feb; 19(8):6051-6056. PubMed ID: 28191577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study.
    Zhang YH; Chen YB; Zhou KG; Liu CH; Zeng J; Zhang HL; Peng Y
    Nanotechnology; 2009 May; 20(18):185504. PubMed ID: 19420616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Band structure of graphene modulated by Ti or N dopants and applications in gas sensoring.
    Zhang HP; Luo XG; Lin XY; Zhang YP; Tang PP; Lu X; Tang Y
    J Mol Graph Model; 2015 Sep; 61():224-30. PubMed ID: 26295685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Stone-Wales defect on the interactions between NH3, NO2 and graphene.
    Zhang YH; Zhou KG; Xie KF; Gou XC; Zeng J; Zhang HL; Peng Y
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7347-50. PubMed ID: 21137931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of Mn atom on pristine and defected graphene: a density functional theory study.
    Anithaa VS; Shankar R; Vijayakumar S
    J Mol Model; 2017 Apr; 23(4):132. PubMed ID: 28337679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensing propensity of a defected graphane sheet towards CO, H2O and NO2.
    Hussain T; Panigrahi P; Ahuja R
    Nanotechnology; 2014 Aug; 25(32):325501. PubMed ID: 25060926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies of hydrogen sulfide and ammonia adsorption on P- and Si-doped graphene: density functional theory calculations.
    Comparán Padilla VE; Romero de la Cruz MT; Ávila Alvarado YE; García Díaz R; Rodríguez García CE; Hernández Cocoletzi G
    J Mol Model; 2019 Mar; 25(4):94. PubMed ID: 30859395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insight into the interaction between DNA bases and defective graphenes: covalent or non-covalent.
    Xu Z; Meher BR; Eustache D; Wang Y
    J Mol Graph Model; 2014 Feb; 47():8-17. PubMed ID: 24215998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insight into Adsorption of C₂H₂ and H₂ on Doped Graphene with Nonmetallic Atom (N, P, S): A Density Functional Theory Study.
    Huang L; Chu W; Zhou X; Zhou Y; Xue Y
    J Nanosci Nanotechnol; 2020 Feb; 20(2):1288-1295. PubMed ID: 31383130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defect-free functionalized graphene sensor for formaldehyde detection.
    Tang X; Mager N; Vanhorenbeke B; Hermans S; Raskin JP
    Nanotechnology; 2017 Feb; 28(5):055501. PubMed ID: 28008891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boosting sensitivity of boron nitride nanotube (BNNT) to nitrogen dioxide by Fe encapsulation.
    Zhang YQ; Liu YJ; Liu YL; Zhao JX
    J Mol Graph Model; 2014 Jun; 51():1-6. PubMed ID: 24837498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boron doped defective graphene as a potential anode material for Li-ion batteries.
    Hardikar RP; Das D; Han SS; Lee KR; Singh AK
    Phys Chem Chem Phys; 2014 Aug; 16(31):16502-8. PubMed ID: 24986702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of gas adsorption on transition metal ion-modified graphene using DFT calculations.
    Li J; Fan X; Chen J; Shi G; Liu X
    J Mol Model; 2024 Feb; 30(3):72. PubMed ID: 38366130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gas adsorption efficacy of graphene sheets functionalised with carboxyl, hydroxyl and epoxy groups in conjunction with Stone-Thrower-Wales (STW) and inverse Stone-Thrower-Wales (ISTW) defects.
    Lalitha M; Lakshmipathi S
    Phys Chem Chem Phys; 2017 Nov; 19(45):30895-30913. PubMed ID: 29134994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of gas molecules on transition metal embedded graphene: a search for high-performance graphene-based catalysts and gas sensors.
    Zhou M; Lu YH; Cai YQ; Zhang C; Feng YP
    Nanotechnology; 2011 Sep; 22(38):385502. PubMed ID: 21869463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Density functional theory analysis of selective adsorption of AsH
    Li Y; Sun X; Zhou L; Ning P; Tang L
    J Mol Model; 2019 May; 25(5):145. PubMed ID: 31055650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasensitive N-Channel Graphene Gas Sensors by Nondestructive Molecular Doping.
    Kwon B; Bae H; Lee H; Kim S; Hwang J; Lim H; Lee JH; Cho K; Ye J; Lee S; Lee WH
    ACS Nano; 2022 Feb; 16(2):2176-2187. PubMed ID: 35112565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DFT study of CO adsorption on nitrogen/boron doped-graphene for sensor applications.
    Velázquez-López LF; Pacheco-Ortin SM; Mejía-Olvera R; Agacino-Valdés E
    J Mol Model; 2019 Mar; 25(4):91. PubMed ID: 30852668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution-Processed Functionalized Graphene Film Prepared by Vacuum Filtration for Flexible NO
    Dieng M; Sankar S; Ni P; Florea I; Alpuim P; Capasso A; Yassar A; Bouanis FZ
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gas Sensing Analysis of Ag-Decorated Graphene for Sulfur Hexafluoride Decomposition Products Based on the Density Functional Theory.
    Zhang X; Huang R; Gui Y; Zeng H
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27809269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.