These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 28191577)

  • 1. On the mechanism of gas adsorption for pristine, defective and functionalized graphene.
    You Y; Deng J; Tan X; Gorjizadeh N; Yoshimura M; Smith SC; Sahajwalla V; Joshi RK
    Phys Chem Chem Phys; 2017 Feb; 19(8):6051-6056. PubMed ID: 28191577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study.
    Zhang YH; Chen YB; Zhou KG; Liu CH; Zeng J; Zhang HL; Peng Y
    Nanotechnology; 2009 May; 20(18):185504. PubMed ID: 19420616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Band structure of graphene modulated by Ti or N dopants and applications in gas sensoring.
    Zhang HP; Luo XG; Lin XY; Zhang YP; Tang PP; Lu X; Tang Y
    J Mol Graph Model; 2015 Sep; 61():224-30. PubMed ID: 26295685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Stone-Wales defect on the interactions between NH3, NO2 and graphene.
    Zhang YH; Zhou KG; Xie KF; Gou XC; Zeng J; Zhang HL; Peng Y
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7347-50. PubMed ID: 21137931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of Mn atom on pristine and defected graphene: a density functional theory study.
    Anithaa VS; Shankar R; Vijayakumar S
    J Mol Model; 2017 Apr; 23(4):132. PubMed ID: 28337679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensing propensity of a defected graphane sheet towards CO, H2O and NO2.
    Hussain T; Panigrahi P; Ahuja R
    Nanotechnology; 2014 Aug; 25(32):325501. PubMed ID: 25060926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies of hydrogen sulfide and ammonia adsorption on P- and Si-doped graphene: density functional theory calculations.
    Comparán Padilla VE; Romero de la Cruz MT; Ávila Alvarado YE; García Díaz R; Rodríguez García CE; Hernández Cocoletzi G
    J Mol Model; 2019 Mar; 25(4):94. PubMed ID: 30859395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insight into the interaction between DNA bases and defective graphenes: covalent or non-covalent.
    Xu Z; Meher BR; Eustache D; Wang Y
    J Mol Graph Model; 2014 Feb; 47():8-17. PubMed ID: 24215998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insight into Adsorption of C₂H₂ and H₂ on Doped Graphene with Nonmetallic Atom (N, P, S): A Density Functional Theory Study.
    Huang L; Chu W; Zhou X; Zhou Y; Xue Y
    J Nanosci Nanotechnol; 2020 Feb; 20(2):1288-1295. PubMed ID: 31383130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defect-free functionalized graphene sensor for formaldehyde detection.
    Tang X; Mager N; Vanhorenbeke B; Hermans S; Raskin JP
    Nanotechnology; 2017 Feb; 28(5):055501. PubMed ID: 28008891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boosting sensitivity of boron nitride nanotube (BNNT) to nitrogen dioxide by Fe encapsulation.
    Zhang YQ; Liu YJ; Liu YL; Zhao JX
    J Mol Graph Model; 2014 Jun; 51():1-6. PubMed ID: 24837498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boron doped defective graphene as a potential anode material for Li-ion batteries.
    Hardikar RP; Das D; Han SS; Lee KR; Singh AK
    Phys Chem Chem Phys; 2014 Aug; 16(31):16502-8. PubMed ID: 24986702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of gas adsorption on transition metal ion-modified graphene using DFT calculations.
    Li J; Fan X; Chen J; Shi G; Liu X
    J Mol Model; 2024 Feb; 30(3):72. PubMed ID: 38366130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gas adsorption efficacy of graphene sheets functionalised with carboxyl, hydroxyl and epoxy groups in conjunction with Stone-Thrower-Wales (STW) and inverse Stone-Thrower-Wales (ISTW) defects.
    Lalitha M; Lakshmipathi S
    Phys Chem Chem Phys; 2017 Nov; 19(45):30895-30913. PubMed ID: 29134994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of gas molecules on transition metal embedded graphene: a search for high-performance graphene-based catalysts and gas sensors.
    Zhou M; Lu YH; Cai YQ; Zhang C; Feng YP
    Nanotechnology; 2011 Sep; 22(38):385502. PubMed ID: 21869463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Density functional theory analysis of selective adsorption of AsH
    Li Y; Sun X; Zhou L; Ning P; Tang L
    J Mol Model; 2019 May; 25(5):145. PubMed ID: 31055650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasensitive N-Channel Graphene Gas Sensors by Nondestructive Molecular Doping.
    Kwon B; Bae H; Lee H; Kim S; Hwang J; Lim H; Lee JH; Cho K; Ye J; Lee S; Lee WH
    ACS Nano; 2022 Feb; 16(2):2176-2187. PubMed ID: 35112565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DFT study of CO adsorption on nitrogen/boron doped-graphene for sensor applications.
    Velázquez-López LF; Pacheco-Ortin SM; Mejía-Olvera R; Agacino-Valdés E
    J Mol Model; 2019 Mar; 25(4):91. PubMed ID: 30852668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gas Sensing Analysis of Ag-Decorated Graphene for Sulfur Hexafluoride Decomposition Products Based on the Density Functional Theory.
    Zhang X; Huang R; Gui Y; Zeng H
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27809269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensing mechanism of the nano-confined space constructed by graphene.
    Guo X; Yang H; Bo Z; Yan J; Cen K
    Nanotechnology; 2021 Jun; 32(37):. PubMed ID: 34062513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.