These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 28191701)

  • 21. Paclitaxel molecularly imprinted polymer-PEG-folate nanoparticles for targeting anticancer delivery: Characterization and cellular cytotoxicity.
    Esfandyari-Manesh M; Darvishi B; Ishkuh FA; Shahmoradi E; Mohammadi A; Javanbakht M; Dinarvand R; Atyabi F
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():626-33. PubMed ID: 26952466
    [TBL] [Abstract][Full Text] [Related]  

  • 22. pH-responsive biodegradable micelles based on acid-labile polycarbonate hydrophobe: synthesis and triggered drug release.
    Chen W; Meng F; Li F; Ji SJ; Zhong Z
    Biomacromolecules; 2009 Jul; 10(7):1727-35. PubMed ID: 19469499
    [TBL] [Abstract][Full Text] [Related]  

  • 23. NIR-Triggered Blasting Nanovesicles for Targeted Multimodal Image-Guided Synergistic Cancer Photothermal and Chemotherapy.
    Xiao Z; You Y; Liu Y; He L; Zhang D; Cheng Q; Wang D; Chen T; Shi C; Luo L
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):35376-35388. PubMed ID: 34313109
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Core-crosslinked pH-sensitive degradable micelles: A promising approach to resolve the extracellular stability versus intracellular drug release dilemma.
    Wu Y; Chen W; Meng F; Wang Z; Cheng R; Deng C; Liu H; Zhong Z
    J Control Release; 2012 Dec; 164(3):338-45. PubMed ID: 22800578
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PEGylated hyperbranched polyphosphoester based nanocarriers for redox-responsive delivery of doxorubicin.
    Chen C; Zheng P; Cao Z; Ma Y; Li J; Qian H; Tao W; Yang X
    Biomater Sci; 2016 Mar; 4(3):412-7. PubMed ID: 26626655
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A dual-targeting strategy for enhanced drug delivery and synergistic therapy based on thermosensitive nanoparticles.
    Wang M; You C; Gao Z; Wu H; Sun B; Zhu X; Chen R
    J Biomater Sci Polym Ed; 2018 Aug; 29(11):1360-1374. PubMed ID: 29611463
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cationic versus anionic core-shell nanogels for transport of cisplatin to lung cancer cells.
    Gonzalez-Urias A; Zapata-Gonzalez I; Licea-Claverie A; Licea-Navarro AF; Bernaldez-Sarabia J; Cervantes-Luevano K
    Colloids Surf B Biointerfaces; 2019 Oct; 182():110365. PubMed ID: 31344612
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enzyme and Thermal Dual Responsive Amphiphilic Polymer Core-Shell Nanoparticle for Doxorubicin Delivery to Cancer Cells.
    Kashyap S; Singh N; Surnar B; Jayakannan M
    Biomacromolecules; 2016 Jan; 17(1):384-98. PubMed ID: 26652038
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hepatoma-targeting and pH-sensitive nanocarriers based on a novel D-galactopyranose copolymer for efficient drug delivery.
    Ding Y; Han J; Tian B; Han J; Zhang J; Zheng H; Han Y; Pei M
    Int J Pharm; 2014 Dec; 477(1-2):187-96. PubMed ID: 25455771
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cisplatin loaded methoxy poly (ethylene glycol)-block-Poly (L-glutamic acid-co-L-Phenylalanine) nanoparticles against human breast cancer cell.
    Ahmad Z; Tang Z; Shah A; Lv S; Zhang D; Zhang Y; Chen X
    Macromol Biosci; 2014 Sep; 14(9):1337-45. PubMed ID: 24933015
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Core-crosslinked polymeric micelles with controlled release of covalently entrapped doxorubicin.
    Talelli M; Iman M; Varkouhi AK; Rijcken CJ; Schiffelers RM; Etrych T; Ulbrich K; van Nostrum CF; Lammers T; Storm G; Hennink WE
    Biomaterials; 2010 Oct; 31(30):7797-804. PubMed ID: 20673684
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Amorphous amphiphilic P(3HV-co-4HB)-b-mPEG block copolymer synthesized from bacterial copolyester via melt transesterification: nanoparticle preparation, cisplatin-loading for cancer therapy and in vitro evaluation.
    Shah M; Ullah N; Choi MH; Kim MO; Yoon SC
    Eur J Pharm Biopharm; 2012 Apr; 80(3):518-27. PubMed ID: 22178562
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polymeric nanoparticles with encapsulated superparamagnetic iron oxide and conjugated cisplatin for potential bladder cancer therapy.
    Huang C; Neoh KG; Xu L; Kang ET; Chiong E
    Biomacromolecules; 2012 Aug; 13(8):2513-20. PubMed ID: 22793172
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rapamycin/DiR loaded lipid-polyaniline nanoparticles for dual-modal imaging guided enhanced photothermal and antiangiogenic combination therapy.
    Wang J; Guo F; Yu M; Liu L; Tan F; Yan R; Li N
    J Control Release; 2016 Sep; 237():23-34. PubMed ID: 27388755
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Core cross-linked poly(ethylene glycol)-graft-Dextran nanoparticles for reduction and pH dual responsive intracellular drug delivery.
    Lian H; Du Y; Chen X; Duan L; Gao G; Xiao C; Zhuang X
    J Colloid Interface Sci; 2017 Jun; 496():201-210. PubMed ID: 28232293
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Responsive polymer-fluorescent carbon nanoparticle hybrid nanogels for optical temperature sensing, near-infrared light-responsive drug release, and tumor cell imaging.
    Wang H; Ke F; Mararenko A; Wei Z; Banerjee P; Zhou S
    Nanoscale; 2014 Jul; 6(13):7443-52. PubMed ID: 24881520
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel free-paclitaxel-loaded redox-responsive nanoparticles based on a disulfide-linked poly(ethylene glycol)-drug conjugate for intracellular drug delivery: synthesis, characterization, and antitumor activity in vitro and in vivo.
    Chuan X; Song Q; Lin J; Chen X; Zhang H; Dai W; He B; Wang X; Zhang Q
    Mol Pharm; 2014 Oct; 11(10):3656-70. PubMed ID: 25208098
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Poly(ethyleneglycol)-b-poly(ε-caprolactone-co-γ-hydroxyl-ε- caprolactone) bearing pendant hydroxyl groups as nanocarriers for doxorubicin delivery.
    Chang L; Deng L; Wang W; Lv Z; Hu F; Dong A; Zhang J
    Biomacromolecules; 2012 Oct; 13(10):3301-10. PubMed ID: 22931197
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Asymmetric Triblock Copolymer Nanocarriers for Controlled Localization and pH-Sensitive Release of Proteins.
    Vasquez D; Einfalt T; Meier W; Palivan CG
    Langmuir; 2016 Oct; 32(40):10235-10243. PubMed ID: 27607356
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tailored design of multifunctional and programmable pH-responsive self-assembling polypeptides as drug delivery nanocarrier for cancer therapy.
    Wang TW; Yeh CW; Kuan CH; Wang LW; Chen LH; Wu HC; Sun JS
    Acta Biomater; 2017 Aug; 58():54-66. PubMed ID: 28606810
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.