These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
370 related articles for article (PubMed ID: 28191769)
1. Suppression of Transforming Growth Factor-β Signaling Delays Cellular Senescence and Preserves the Function of Endothelial Cells Derived from Human Pluripotent Stem Cells. Bai H; Gao Y; Hoyle DL; Cheng T; Wang ZZ Stem Cells Transl Med; 2017 Feb; 6(2):589-600. PubMed ID: 28191769 [TBL] [Abstract][Full Text] [Related]
2. Distinct roles of transforming growth factor-β signaling and transforming growth factor-β receptor inhibitor SB431542 in the regulation of p21 expression. Koo BH; Kim Y; Je Cho Y; Kim DS Eur J Pharmacol; 2015 Oct; 764():413-423. PubMed ID: 26187313 [TBL] [Abstract][Full Text] [Related]
3. Decreased proliferation and cell cycle arrest in neoplastic rat pituitary cells is associated with transforming growth factor-beta1-induced expression of p15/INK4B. Frost SJ; Simpson DJ; Farrell WE Mol Cell Endocrinol; 2001 May; 176(1-2):29-37. PubMed ID: 11369440 [TBL] [Abstract][Full Text] [Related]
4. Transforming growth factor-beta induces senescence in hepatocellular carcinoma cells and inhibits tumor growth. Senturk S; Mumcuoglu M; Gursoy-Yuzugullu O; Cingoz B; Akcali KC; Ozturk M Hepatology; 2010 Sep; 52(3):966-74. PubMed ID: 20583212 [TBL] [Abstract][Full Text] [Related]
5. TGF-β1 is involved in senescence-related pathways in glomerular endothelial cells via p16 translocation and p21 induction. Ueda S; Tominaga T; Ochi A; Sakurai A; Nishimura K; Shibata E; Wakino S; Tamaki M; Nagai K Sci Rep; 2021 Nov; 11(1):21643. PubMed ID: 34737348 [TBL] [Abstract][Full Text] [Related]
6. Inhibition of TGF-β Signaling Promotes Human Pancreatic β-Cell Replication. Dhawan S; Dirice E; Kulkarni RN; Bhushan A Diabetes; 2016 May; 65(5):1208-18. PubMed ID: 26936960 [TBL] [Abstract][Full Text] [Related]
7. Intrinsic cooperation between p16INK4a and p21Waf1/Cip1 in the onset of cellular senescence and tumor suppression in vivo. Takeuchi S; Takahashi A; Motoi N; Yoshimoto S; Tajima T; Yamakoshi K; Hirao A; Yanagi S; Fukami K; Ishikawa Y; Sone S; Hara E; Ohtani N Cancer Res; 2010 Nov; 70(22):9381-90. PubMed ID: 21062974 [TBL] [Abstract][Full Text] [Related]
8. Bmi-1 extends the life span of normal human oral keratinocytes by inhibiting the TGF-beta signaling. Kim RH; Lieberman MB; Lee R; Shin KH; Mehrazarin S; Oh JE; Park NH; Kang MK Exp Cell Res; 2010 Oct; 316(16):2600-8. PubMed ID: 20630502 [TBL] [Abstract][Full Text] [Related]
9. Epidermal growth factor receptor and mutant p53 expand an esophageal cellular subpopulation capable of epithelial-to-mesenchymal transition through ZEB transcription factors. Ohashi S; Natsuizaka M; Wong GS; Michaylira CZ; Grugan KD; Stairs DB; Kalabis J; Vega ME; Kalman RA; Nakagawa M; Klein-Szanto AJ; Herlyn M; Diehl JA; Rustgi AK; Nakagawa H Cancer Res; 2010 May; 70(10):4174-84. PubMed ID: 20424117 [TBL] [Abstract][Full Text] [Related]
10. The balance of positive and negative effects of TGF-β signaling regulates the development of hematopoietic and endothelial progenitors in human pluripotent stem cells. Bai H; Xie YL; Gao YX; Cheng T; Wang ZZ Stem Cells Dev; 2013 Oct; 22(20):2765-76. PubMed ID: 23758278 [TBL] [Abstract][Full Text] [Related]
11. Suppression of tumorigenesis and induction of p15(ink4b) by Smad4/DPC4 in human pancreatic cancer cells. Peng B; Fleming JB; Breslin T; Grau AM; Fojioka S; Abbruzzese JL; Evans DB; Ayers D; Wathen K; Wu T; Robertson KD; Chiao PJ Clin Cancer Res; 2002 Nov; 8(11):3628-38. PubMed ID: 12429655 [TBL] [Abstract][Full Text] [Related]
12. Escape from Pluripotency via Inhibition of TGF-β/BMP and Activation of Wnt Signaling Accelerates Differentiation and Aging in hPSC Progeny Cells. Fujimori K; Matsumoto T; Kisa F; Hattori N; Okano H; Akamatsu W Stem Cell Reports; 2017 Nov; 9(5):1675-1691. PubMed ID: 29107593 [TBL] [Abstract][Full Text] [Related]
14. Overexpression of transforming growth factor (TGF) beta1 type II receptor restores TGF-beta1 sensitivity and signaling in human prostate cancer cells. Guo Y; Kyprianou N Cell Growth Differ; 1998 Feb; 9(2):185-93. PubMed ID: 9486855 [TBL] [Abstract][Full Text] [Related]
15. Mechanisms of MEOX1 and MEOX2 regulation of the cyclin dependent kinase inhibitors p21 and p16 in vascular endothelial cells. Douville JM; Cheung DY; Herbert KL; Moffatt T; Wigle JT PLoS One; 2011; 6(12):e29099. PubMed ID: 22206000 [TBL] [Abstract][Full Text] [Related]
16. Growth inhibition induced by transforming growth factor-beta1 in human oral squamous cell carcinoma. Wang X; Sun W; Bai J; Ma L; Yu Y; Geng J; Qi J; Shi Z; Fu S Mol Biol Rep; 2009 May; 36(5):861-9. PubMed ID: 18418730 [TBL] [Abstract][Full Text] [Related]
17. TGF-beta regulates differentially the proliferation of fetal and adult human skin fibroblasts via the activation of PKA and the autocrine action of FGF-2. Giannouli CC; Kletsas D Cell Signal; 2006 Sep; 18(9):1417-29. PubMed ID: 16361081 [TBL] [Abstract][Full Text] [Related]
18. Hypoxia inhibits cellular senescence to restore the therapeutic potential of old human endothelial progenitor cells via the hypoxia-inducible factor-1α-TWIST-p21 axis. Lee SH; Lee JH; Yoo SY; Hur J; Kim HS; Kwon SM Arterioscler Thromb Vasc Biol; 2013 Oct; 33(10):2407-14. PubMed ID: 23928864 [TBL] [Abstract][Full Text] [Related]
19. MicroRNA-10A* and MicroRNA-21 modulate endothelial progenitor cell senescence via suppressing high-mobility group A2. Zhu S; Deng S; Ma Q; Zhang T; Jia C; Zhuo D; Yang F; Wei J; Wang L; Dykxhoorn DM; Hare JM; Goldschmidt-Clermont PJ; Dong C Circ Res; 2013 Jan; 112(1):152-64. PubMed ID: 23072816 [TBL] [Abstract][Full Text] [Related]
20. Targeted inhibition of p57 and p15 blocks transforming growth factor beta-inhibited proliferation of primary cultured human limbal epithelial cells. Chen Z; Li DQ; Tong L; Stewart P; Chu C; Pflugfelder SC Mol Vis; 2006 Aug; 12():983-94. PubMed ID: 16943770 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]