These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1270 related articles for article (PubMed ID: 28191901)
1. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Kim YB; Komor AC; Levy JM; Packer MS; Zhao KT; Liu DR Nat Biotechnol; 2017 Apr; 35(4):371-376. PubMed ID: 28191901 [TBL] [Abstract][Full Text] [Related]
2. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Komor AC; Kim YB; Packer MS; Zuris JA; Liu DR Nature; 2016 May; 533(7603):420-4. PubMed ID: 27096365 [TBL] [Abstract][Full Text] [Related]
3. CRISPR-dCas9 Mediated Cytosine Deaminase Base Editing in Yu S; Price MA; Wang Y; Liu Y; Guo Y; Ni X; Rosser SJ; Bi C; Wang M ACS Synth Biol; 2020 Jul; 9(7):1781-1789. PubMed ID: 32551562 [TBL] [Abstract][Full Text] [Related]
4. Genome-wide target specificities of CRISPR RNA-guided programmable deaminases. Kim D; Lim K; Kim ST; Yoon SH; Kim K; Ryu SM; Kim JS Nat Biotechnol; 2017 May; 35(5):475-480. PubMed ID: 28398345 [TBL] [Abstract][Full Text] [Related]
5. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Zong Y; Wang Y; Li C; Zhang R; Chen K; Ran Y; Qiu JL; Wang D; Gao C Nat Biotechnol; 2017 May; 35(5):438-440. PubMed ID: 28244994 [TBL] [Abstract][Full Text] [Related]
6. Targeted Base Editing with CRISPR-Deaminase in Tomato. Shimatani Z; Ariizumi T; Fujikura U; Kondo A; Ezura H; Nishida K Methods Mol Biol; 2019; 1917():297-307. PubMed ID: 30610645 [TBL] [Abstract][Full Text] [Related]
7. Improving Plant Genome Editing with High-Fidelity xCas9 and Non-canonical PAM-Targeting Cas9-NG. Zhong Z; Sretenovic S; Ren Q; Yang L; Bao Y; Qi C; Yuan M; He Y; Liu S; Liu X; Wang J; Huang L; Wang Y; Baby D; Wang D; Zhang T; Qi Y; Zhang Y Mol Plant; 2019 Jul; 12(7):1027-1036. PubMed ID: 30928637 [TBL] [Abstract][Full Text] [Related]
8. Improved base editor for efficient editing in GC contexts in rabbits with an optimized AID-Cas9 fusion. Liu Z; Shan H; Chen S; Chen M; Zhang Q; Lai L; Li Z FASEB J; 2019 Aug; 33(8):9210-9219. PubMed ID: 31071267 [TBL] [Abstract][Full Text] [Related]
9. Multiplex Gene Disruption by Targeted Base Editing of Yarrowia lipolytica Genome Using Cytidine Deaminase Combined with the CRISPR/Cas9 System. Bae SJ; Park BG; Kim BG; Hahn JS Biotechnol J; 2020 Jan; 15(1):e1900238. PubMed ID: 31657874 [TBL] [Abstract][Full Text] [Related]
10. CRISPR-Cas9 and CRISPR-Assisted Cytidine Deaminase Enable Precise and Efficient Genome Editing in Klebsiella pneumoniae. Wang Y; Wang S; Chen W; Song L; Zhang Y; Shen Z; Yu F; Li M; Ji Q Appl Environ Microbiol; 2018 Dec; 84(23):. PubMed ID: 30217854 [No Abstract] [Full Text] [Related]
11. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Guilinger JP; Thompson DB; Liu DR Nat Biotechnol; 2014 Jun; 32(6):577-582. PubMed ID: 24770324 [TBL] [Abstract][Full Text] [Related]
12. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Shimatani Z; Kashojiya S; Takayama M; Terada R; Arazoe T; Ishii H; Teramura H; Yamamoto T; Komatsu H; Miura K; Ezura H; Nishida K; Ariizumi T; Kondo A Nat Biotechnol; 2017 May; 35(5):441-443. PubMed ID: 28346401 [TBL] [Abstract][Full Text] [Related]
13. Antisense RNA Interference-Enhanced CRISPR/Cas9 Base Editing Method for Improving Base Editing Efficiency in Zhang Y; Yun K; Huang H; Tu R; Hua E; Wang M ACS Synth Biol; 2021 May; 10(5):1053-1063. PubMed ID: 33720688 [TBL] [Abstract][Full Text] [Related]
14. MagnEdit-interacting factors that recruit DNA-editing enzymes to single base targets. McCann JL; Salamango DJ; Law EK; Brown WL; Harris RS Life Sci Alliance; 2020 Apr; 3(4):. PubMed ID: 32094150 [TBL] [Abstract][Full Text] [Related]
15. Cas9-NG Greatly Expands the Targeting Scope of the Genome-Editing Toolkit by Recognizing NG and Other Atypical PAMs in Rice. Ren B; Liu L; Li S; Kuang Y; Wang J; Zhang D; Zhou X; Lin H; Zhou H Mol Plant; 2019 Jul; 12(7):1015-1026. PubMed ID: 30928635 [TBL] [Abstract][Full Text] [Related]
16. Highly efficient RNA-guided base editing in mouse embryos. Kim K; Ryu SM; Kim ST; Baek G; Kim D; Lim K; Chung E; Kim S; Kim JS Nat Biotechnol; 2017 May; 35(5):435-437. PubMed ID: 28244995 [TBL] [Abstract][Full Text] [Related]
17. CRISPR-Cas nucleases and base editors for plant genome editing. Gürel F; Zhang Y; Sretenovic S; Qi Y aBIOTECH; 2020 Jan; 1(1):74-87. PubMed ID: 36305010 [TBL] [Abstract][Full Text] [Related]
18. Highly efficient single base editing in Aspergillus niger with CRISPR/Cas9 cytidine deaminase fusion. Huang L; Dong H; Zheng J; Wang B; Pan L Microbiol Res; 2019; 223-225():44-50. PubMed ID: 31178050 [TBL] [Abstract][Full Text] [Related]
19. Improving CRISPR-Cas9 Genome Editing Efficiency by Fusion with Chromatin-Modulating Peptides. Ding X; Seebeck T; Feng Y; Jiang Y; Davis GD; Chen F CRISPR J; 2019 Feb; 2():51-63. PubMed ID: 31021236 [TBL] [Abstract][Full Text] [Related]