BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1233 related articles for article (PubMed ID: 28191901)

  • 21. Cas9, Cpf1 and C2c1/2/3-What's next?
    Nakade S; Yamamoto T; Sakuma T
    Bioengineered; 2017 May; 8(3):265-273. PubMed ID: 28140746
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome Engineering in Rice Using Cas9 Variants that Recognize NG PAM Sequences.
    Hua K; Tao X; Han P; Wang R; Zhu JK
    Mol Plant; 2019 Jul; 12(7):1003-1014. PubMed ID: 30928636
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineering of high-precision base editors for site-specific single nucleotide replacement.
    Tan J; Zhang F; Karcher D; Bock R
    Nat Commun; 2019 Jan; 10(1):439. PubMed ID: 30683865
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multiplex genome editing using a dCas9-cytidine deaminase fusion in Streptomyces.
    Zhao Y; Tian J; Zheng G; Chen J; Sun C; Yang Z; Zimin AA; Jiang W; Deng Z; Wang Z; Lu Y
    Sci China Life Sci; 2020 Jul; 63(7):1053-1062. PubMed ID: 31872379
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes.
    Staahl BT; Benekareddy M; Coulon-Bainier C; Banfal AA; Floor SN; Sabo JK; Urnes C; Munares GA; Ghosh A; Doudna JA
    Nat Biotechnol; 2017 May; 35(5):431-434. PubMed ID: 28191903
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CRISPR base editors: genome editing without double-stranded breaks.
    Eid A; Alshareef S; Mahfouz MM
    Biochem J; 2018 Jun; 475(11):1955-1964. PubMed ID: 29891532
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Increasing the targeting scope and efficiency of base editing with Proxy-BE strategy.
    Liu Y; Li G; Yang G; Gu H; Huang S; Yu W; Qin G; Liu X; Zhou F; Huang X; Wei Y
    FEBS Lett; 2020 Apr; 594(8):1319-1328. PubMed ID: 31837228
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CRISPR-Cas9
    Li Q; Seys FM; Minton NP; Yang J; Jiang Y; Jiang W; Yang S
    Biotechnol Bioeng; 2019 Jun; 116(6):1475-1483. PubMed ID: 30739328
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly efficient base editing with expanded targeting scope using SpCas9-NG in rabbits.
    Liu Z; Shan H; Chen S; Chen M; Song Y; Lai L; Li Z
    FASEB J; 2020 Jan; 34(1):588-596. PubMed ID: 31914687
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rationally Designed Base Editors for Precise Editing of the Sickle Cell Disease Mutation.
    Chu SH; Packer M; Rees H; Lam D; Yu Y; Marshall J; Cheng LI; Lam D; Olins J; Ran FA; Liquori A; Gantzer B; Decker J; Born D; Barrera L; Hartigan A; Gaudelli N; Ciaramella G; Slaymaker IM
    CRISPR J; 2021 Apr; 4(2):169-177. PubMed ID: 33876959
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors.
    Huang TP; Zhao KT; Miller SM; Gaudelli NM; Oakes BL; Fellmann C; Savage DF; Liu DR
    Nat Biotechnol; 2019 Jun; 37(6):626-631. PubMed ID: 31110355
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Increasing Cytosine Base Editing Scope and Efficiency With Engineered Cas9-PmCDA1 Fusions and the Modified sgRNA in Rice.
    Wu Y; Xu W; Wang F; Zhao S; Feng F; Song J; Zhang C; Yang J
    Front Genet; 2019; 10():379. PubMed ID: 31134125
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineered CRISPR-Cas9 nucleases with altered PAM specificities.
    Kleinstiver BP; Prew MS; Tsai SQ; Topkar VV; Nguyen NT; Zheng Z; Gonzales AP; Li Z; Peterson RT; Yeh JR; Aryee MJ; Joung JK
    Nature; 2015 Jul; 523(7561):481-5. PubMed ID: 26098369
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The pAblo·pCasso self-curing vector toolset for unconstrained cytidine and adenine base-editing in Gram-negative bacteria.
    Kozaeva E; Nielsen ZS; Nieto-Domínguez M; Nikel PI
    Nucleic Acids Res; 2024 Feb; 52(4):e19. PubMed ID: 38180826
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protospacer Adjacent Motif-Induced Allostery Activates CRISPR-Cas9.
    Palermo G; Ricci CG; Fernando A; Basak R; Jinek M; Rivalta I; Batista VS; McCammon JA
    J Am Chem Soc; 2017 Nov; 139(45):16028-16031. PubMed ID: 28764328
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Precise base editing with CC context-specificity using engineered human APOBEC3G-nCas9 fusions.
    Liu Z; Chen S; Shan H; Jia Y; Chen M; Song Y; Lai L; Li Z
    BMC Biol; 2020 Aug; 18(1):111. PubMed ID: 32867757
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Expanding the genome-targeting scope and the site selectivity of high-precision base editors.
    Tan J; Zhang F; Karcher D; Bock R
    Nat Commun; 2020 Jan; 11(1):629. PubMed ID: 32005820
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CRISPR/Cas9-mediated genome editing in sea urchins.
    Lin CY; Oulhen N; Wessel G; Su YH
    Methods Cell Biol; 2019; 151():305-321. PubMed ID: 30948015
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CRISPR/Cpf1-mediated DNA-free plant genome editing.
    Kim H; Kim ST; Ryu J; Kang BC; Kim JS; Kim SG
    Nat Commun; 2017 Feb; 8():14406. PubMed ID: 28205546
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 62.