BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

513 related articles for article (PubMed ID: 28191903)

  • 1. Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes.
    Staahl BT; Benekareddy M; Coulon-Bainier C; Banfal AA; Floor SN; Sabo JK; Urnes C; Munares GA; Ghosh A; Doudna JA
    Nat Biotechnol; 2017 May; 35(5):431-434. PubMed ID: 28191903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simplified CRISPR tools for efficient genome editing and streamlined protocols for their delivery into mammalian cells and mouse zygotes.
    Jacobi AM; Rettig GR; Turk R; Collingwood MA; Zeiner SA; Quadros RM; Harms DW; Bonthuis PJ; Gregg C; Ohtsuka M; Gurumurthy CB; Behlke MA
    Methods; 2017 May; 121-122():16-28. PubMed ID: 28351759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome editing via delivery of Cas9 ribonucleoprotein.
    DeWitt MA; Corn JE; Carroll D
    Methods; 2017 May; 121-122():9-15. PubMed ID: 28410976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome Editing in Penicillium chrysogenum Using Cas9 Ribonucleoprotein Particles.
    Pohl C; Mózsik L; Driessen AJM; Bovenberg RAL; Nygård YI
    Methods Mol Biol; 2018; 1772():213-232. PubMed ID: 29754231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cas9, Cpf1 and C2c1/2/3-What's next?
    Nakade S; Yamamoto T; Sakuma T
    Bioengineered; 2017 May; 8(3):265-273. PubMed ID: 28140746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of CRISPR/Cas9 mediated virus resistance in agriculturally important crops.
    Khatodia S; Bhatotia K; Tuteja N
    Bioengineered; 2017 May; 8(3):274-279. PubMed ID: 28581909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Toolkit of CRISPR-Based Genome Editing Systems in Drosophila.
    Xu J; Ren X; Sun J; Wang X; Qiao HH; Xu BW; Liu LP; Ni JQ
    J Genet Genomics; 2015 Apr; 42(4):141-9. PubMed ID: 25953352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient in vivo neuronal genome editing in the mouse brain using nanocapsules containing CRISPR-Cas9 ribonucleoproteins.
    Metzger JM; Wang Y; Neuman SS; Snow KJ; Murray SA; Lutz CM; Bondarenko V; Felton J; Gimse K; Xie R; Li D; Zhao Y; Flowers MT; Simmons HA; Roy S; Saha K; Levine JE; Emborg ME; Gong S
    Biomaterials; 2023 Feb; 293():121959. PubMed ID: 36527789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two Distinct Approaches for CRISPR-Cas9-Mediated Gene Editing in Cryptococcus neoformans and Related Species.
    Wang P
    mSphere; 2018 Jun; 3(3):. PubMed ID: 29898980
    [No Abstract]   [Full Text] [Related]  

  • 10. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions.
    Kim YB; Komor AC; Levy JM; Packer MS; Zhao KT; Liu DR
    Nat Biotechnol; 2017 Apr; 35(4):371-376. PubMed ID: 28191901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small extracellular vesicle-mediated CRISPR-Cas9 RNP delivery for cardiac-specific genome editing.
    Mun D; Kang JY; Kim H; Yun N; Joung B
    J Control Release; 2024 Jun; 370():798-810. PubMed ID: 38754633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A robust and practical CRISPR/crRNA screening system for soybean cultivar editing using LbCpf1 ribonucleoproteins.
    Kim H; Choi J
    Plant Cell Rep; 2021 Jun; 40(6):1059-1070. PubMed ID: 32945949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR-Directed Gene Editing Catalyzes Precise Gene Segment Replacement
    Sansbury BM; Wagner AM; Tarcic G; Barth S; Nitzan E; Goldfus R; Vidne M; Kmiec EB
    CRISPR J; 2019 Apr; 2():121-132. PubMed ID: 30998096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins.
    Schumann K; Lin S; Boyer E; Simeonov DR; Subramaniam M; Gate RE; Haliburton GE; Ye CJ; Bluestone JA; Doudna JA; Marson A
    Proc Natl Acad Sci U S A; 2015 Aug; 112(33):10437-42. PubMed ID: 26216948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered extracellular vesicles as versatile ribonucleoprotein delivery vehicles for efficient and safe CRISPR genome editing.
    Yao X; Lyu P; Yoo K; Yadav MK; Singh R; Atala A; Lu B
    J Extracell Vesicles; 2021 Mar; 10(5):e12076. PubMed ID: 33747370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome editing of mutant KRAS through supramolecular polymer-mediated delivery of Cas9 ribonucleoprotein for colorectal cancer therapy.
    Wan T; Chen Y; Pan Q; Xu X; Kang Y; Gao X; Huang F; Wu C; Ping Y
    J Control Release; 2020 Jun; 322():236-247. PubMed ID: 32169537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid, Selection-Free, High-Efficiency Genome Editing in Protozoan Parasites Using CRISPR-Cas9 Ribonucleoproteins.
    Soares Medeiros LC; South L; Peng D; Bustamante JM; Wang W; Bunkofske M; Perumal N; Sanchez-Valdez F; Tarleton RL
    mBio; 2017 Nov; 8(6):. PubMed ID: 29114029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. More specific CRISPR editing.
    de Souza N
    Nat Methods; 2014 Jul; 11(7):712. PubMed ID: 25110782
    [No Abstract]   [Full Text] [Related]  

  • 19. Recent advances in CRISPR/Cas9 mediated genome editing in Bacillus subtilis.
    Hong KQ; Liu DY; Chen T; Wang ZW
    World J Microbiol Biotechnol; 2018 Sep; 34(10):153. PubMed ID: 30269229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeted genome modification of crop plants using a CRISPR-Cas system.
    Shan Q; Wang Y; Li J; Zhang Y; Chen K; Liang Z; Zhang K; Liu J; Xi JJ; Qiu JL; Gao C
    Nat Biotechnol; 2013 Aug; 31(8):686-8. PubMed ID: 23929338
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 26.