BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

514 related articles for article (PubMed ID: 28191903)

  • 41. Novel Thrombotic Function of a Human SNP in STXBP5 Revealed by CRISPR/Cas9 Gene Editing in Mice.
    Zhu QM; Ko KA; Ture S; Mastrangelo MA; Chen MH; Johnson AD; O'Donnell CJ; Morrell CN; Miano JM; Lowenstein CJ
    Arterioscler Thromb Vasc Biol; 2017 Feb; 37(2):264-270. PubMed ID: 28062498
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genome Editing in Retinal Diseases using CRISPR Technology.
    Yiu G
    Ophthalmol Retina; 2018 Jan; 2(1):1-3. PubMed ID: 31047294
    [No Abstract]   [Full Text] [Related]  

  • 43. Genome Editing of Rat.
    Kaneko T
    Methods Mol Biol; 2017; 1630():101-108. PubMed ID: 28643253
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Targeted mutagenesis in mice by electroporation of Cpf1 ribonucleoproteins.
    Hur JK; Kim K; Been KW; Baek G; Ye S; Hur JW; Ryu SM; Lee YS; Kim JS
    Nat Biotechnol; 2016 Aug; 34(8):807-8. PubMed ID: 27272385
    [No Abstract]   [Full Text] [Related]  

  • 45. Genome editing: The domestication of Cas9.
    Urnov F
    Nature; 2016 Jan; 529(7587):468-9. PubMed ID: 26819037
    [No Abstract]   [Full Text] [Related]  

  • 46. Improving CRISPR-Cas9 Genome Editing Efficiency by Fusion with Chromatin-Modulating Peptides.
    Ding X; Seebeck T; Feng Y; Jiang Y; Davis GD; Chen F
    CRISPR J; 2019 Feb; 2():51-63. PubMed ID: 31021236
    [TBL] [Abstract][Full Text] [Related]  

  • 47. CRISPR/Cas9-mediated gene replacement in the basidiomycetous yeast Pseudozyma antarctica.
    Kunitake E; Tanaka T; Ueda H; Endo A; Yarimizu T; Katoh E; Kitamoto H
    Fungal Genet Biol; 2019 Sep; 130():82-90. PubMed ID: 31026589
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In vivo profiling of metastatic double knockouts through CRISPR-Cpf1 screens.
    Chow RD; Wang G; Ye L; Codina A; Kim HR; Shen L; Dong MB; Errami Y; Chen S
    Nat Methods; 2019 May; 16(5):405-408. PubMed ID: 30962622
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Improved CRISPR-Cas12a-assisted one-pot DNA editing method enables seamless DNA editing.
    Wang L; Wang H; Liu H; Zhao Q; Liu B; Wang L; Zhang J; Zhu J; Bao R; Luo Y
    Biotechnol Bioeng; 2019 Jun; 116(6):1463-1474. PubMed ID: 30730047
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development of CRISPR/Cas9 system for targeted DNA modifications and recent improvements in modification efficiency and specificity.
    Shin J; Oh JW
    BMB Rep; 2020 Jul; 53(7):341-348. PubMed ID: 32580834
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cas11 enables genome engineering in human cells with compact CRISPR-Cas3 systems.
    Tan R; Krueger RK; Gramelspacher MJ; Zhou X; Xiao Y; Ke A; Hou Z; Zhang Y
    Mol Cell; 2022 Feb; 82(4):852-867.e5. PubMed ID: 35051351
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Generation of knockout mice by Cpf1-mediated gene targeting.
    Kim Y; Cheong SA; Lee JG; Lee SW; Lee MS; Baek IJ; Sung YH
    Nat Biotechnol; 2016 Aug; 34(8):808-10. PubMed ID: 27272387
    [No Abstract]   [Full Text] [Related]  

  • 53. Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice.
    Xu R; Wei P; Yang J
    Methods Mol Biol; 2017; 1498():33-40. PubMed ID: 27709567
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Efficient targeted DNA editing and replacement in
    Ferenczi A; Pyott DE; Xipnitou A; Molnar A
    Proc Natl Acad Sci U S A; 2017 Dec; 114(51):13567-13572. PubMed ID: 29208717
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Non-viral delivery of genome-editing nucleases for gene therapy.
    Wang M; Glass ZA; Xu Q
    Gene Ther; 2017 Mar; 24(3):144-150. PubMed ID: 27797355
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Emerging Strategies for Genome Editing in the Brain.
    Foss DV; Wilson RC
    Trends Mol Med; 2018 Oct; 24(10):822-824. PubMed ID: 30104136
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Generation of genetically-engineered animals using engineered endonucleases.
    Lee JG; Sung YH; Baek IJ
    Arch Pharm Res; 2018 Sep; 41(9):885-897. PubMed ID: 29777358
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Rapid interrogation of cancer cell of origin through CRISPR editing.
    Feng W; Cao Z; Lim PX; Zhao H; Luo H; Mao N; Lee YS; Rivera AA; Choi D; Wu C; Han T; Romero R; de Stanchina E; Carver BS; Wang Q; Jasin M; Sawyers CL
    Proc Natl Acad Sci U S A; 2021 Aug; 118(32):. PubMed ID: 34353917
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Genome editing in primary cells and in vivo using viral-derived Nanoblades loaded with Cas9-sgRNA ribonucleoproteins.
    Mangeot PE; Risson V; Fusil F; Marnef A; Laurent E; Blin J; Mournetas V; Massouridès E; Sohier TJM; Corbin A; Aubé F; Teixeira M; Pinset C; Schaeffer L; Legube G; Cosset FL; Verhoeyen E; Ohlmann T; Ricci EP
    Nat Commun; 2019 Jan; 10(1):45. PubMed ID: 30604748
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Translating the genomic revolution - targeted genome editing in primates.
    Cathomen T; Ehl S
    N Engl J Med; 2014 Jun; 370(24):2342-5. PubMed ID: 24918378
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.