BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 28191958)

  • 1. Specific Ligation of Two Multimeric Enzymes with Native Peptides and Immobilization with Controlled Molar Ratio.
    Du K; Zhao J; Sun J; Feng W
    Bioconjug Chem; 2017 Apr; 28(4):1166-1175. PubMed ID: 28191958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing the activity and stability of Mn-superoxide dismutase by one-by-one ligation to catalase.
    Li R; Zhou X; Liu D; Feng W
    Free Radic Biol Med; 2018 Dec; 129():138-145. PubMed ID: 30227270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous synthesis of l-DOPA and oxidation of d-amino acid by specific coupling of a peroxidase to d-amino acid oxidase.
    Chen Y; Chu H; Liu W; Feng W
    Enzyme Microb Technol; 2019 Feb; 121():8-16. PubMed ID: 30554648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Covalent Linkage of an R-ω-Transaminase to a d-Amino Acid Oxidase through Protein Splicing to Enhance Enzymatic Catalysis of Transamination.
    Du K; Li R; Zhang D; Feng W
    Chembiochem; 2019 Mar; 20(5):701-709. PubMed ID: 30447031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immobilization of R-ω-transaminase on MnO
    Sun J; Cui WH; Du K; Gao Q; Du M; Ji P; Feng W
    J Biotechnol; 2017 Mar; 245():14-20. PubMed ID: 28159615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induction of cytotoxic oxidative stress by D-alanine in brain tumor cells expressing Rhodotorula gracilis D-amino acid oxidase: a cancer gene therapy strategy.
    Stegman LD; Zheng H; Neal ER; Ben-Yoseph O; Pollegioni L; Pilone MS; Ross BD
    Hum Gene Ther; 1998 Jan; 9(2):185-93. PubMed ID: 9472778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple strategy for the immobilization of catalase on multi-walled carbon nanotube/poly (L-lysine) biocomposite for the detection of H2O2 and iodate.
    Ezhil Vilian AT; Chen SM; Lou BS
    Biosens Bioelectron; 2014 Nov; 61():639-47. PubMed ID: 24967754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic properties of D-amino acid oxidase in cephalosporin C bioconversion: a comparison between proteins from different sources.
    Pollegioni L; Caldinelli L; Molla G; Sacchi S; Pilone MS
    Biotechnol Prog; 2004; 20(2):467-73. PubMed ID: 15058991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a novel spinal dorsal horn astroglial D-amino acid oxidase-hydrogen peroxide pathway involved in morphine antinociceptive tolerance.
    Gong N; Li XY; Xiao Q; Wang YX
    Anesthesiology; 2014 Apr; 120(4):962-75. PubMed ID: 23928652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of the solubility and stability of D-amino acid oxidase by fusion to an elastin like polypeptide.
    Du K; Sun J; Song X; Song C; Feng W
    J Biotechnol; 2015 Oct; 212():50-5. PubMed ID: 26216181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of novel delivery system for nanoencapsulation of catalase: formulation, characterization, and in vivo evaluation using oxidative skin injury model.
    Abdel-Mageed HM; Fahmy AS; Shaker DS; Mohamed SA
    Artif Cells Nanomed Biotechnol; 2018; 46(sup1):362-371. PubMed ID: 29336165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalase evolved to concentrate H2O2 at its active site.
    Domínguez L; Sosa-Peinado A; Hansberg W
    Arch Biochem Biophys; 2010 Aug; 500(1):82-91. PubMed ID: 20494646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Affinity-binding immobilization of D-amino acid oxidase on mesoporous silica by a silica-specific peptide.
    Wang M; Qi W; Xu H; Yu H; Zhang S; Shen Z
    J Ind Microbiol Biotechnol; 2019 Nov; 46(11):1461-1467. PubMed ID: 31289973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PH-Dependent Enantioselectivity of D-amino Acid Oxidase in Aqueous Solution.
    Liu Q; Chen L; Zhang Z; Du B; Xiao Y; Yang K; Gong L; Wu L; Li X; He Y
    Sci Rep; 2017 Jun; 7(1):2994. PubMed ID: 28592826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties and applications of microbial D-amino acid oxidases: current state and perspectives.
    Pollegioni L; Molla G; Sacchi S; Rosini E; Verga R; Pilone MS
    Appl Microbiol Biotechnol; 2008 Feb; 78(1):1-16. PubMed ID: 18084756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-function relationships in fungal large-subunit catalases.
    Díaz A; Valdés VJ; Rudiño-Piñera E; Horjales E; Hansberg W
    J Mol Biol; 2009 Feb; 386(1):218-32. PubMed ID: 19109972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fusing catalase to an alkane-producing enzyme maintains enzymatic activity by converting the inhibitory byproduct H2O2 to the cosubstrate O2.
    Andre C; Kim SW; Yu XH; Shanklin J
    Proc Natl Acad Sci U S A; 2013 Feb; 110(8):3191-6. PubMed ID: 23391732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New biotech applications from evolved D-amino acid oxidases.
    Pollegioni L; Molla G
    Trends Biotechnol; 2011 Jun; 29(6):276-83. PubMed ID: 21397351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CLytA-DAAO Chimeric Enzyme Bound to Magnetic Nanoparticles. A New Therapeutical Approach for Cancer Patients?
    Fuentes-Baile M; Pérez-Valenciano E; García-Morales P; de Juan Romero C; Bello-Gil D; Barberá VM; Rodríguez-Lescure Á; Sanz JM; Alenda C; Saceda M
    Int J Mol Sci; 2021 Feb; 22(3):. PubMed ID: 33540681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hydrogen peroxide safety valve: The reversible phosphorylation of catalase from the freeze-tolerant North American wood frog, Rana sylvatica.
    Dawson NJ; Storey KB
    Biochim Biophys Acta; 2016 Mar; 1860(3):476-85. PubMed ID: 26691137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.