BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 28192158)

  • 1. Relating emulsion stability to interfacial properties for pharmaceutical emulsions stabilized by Pluronic F68 surfactant.
    Powell KC; Damitz R; Chauhan A
    Int J Pharm; 2017 Apr; 521(1-2):8-18. PubMed ID: 28192158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coalescence stability of emulsions containing globular milk proteins.
    Tcholakova S; Denkov ND; Ivanov IB; Campbell B
    Adv Colloid Interface Sci; 2006 Nov; 123-126():259-93. PubMed ID: 16854363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of kinetically-stable o/w emulsions.
    Capek I
    Adv Colloid Interface Sci; 2004 Mar; 107(2-3):125-55. PubMed ID: 15026289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of oil type and WPI/Tween 80 ratio at the oil-water interface: Adsorption, interfacial rheology and emulsion features.
    Gomes A; Costa ALR; Cunha RL
    Colloids Surf B Biointerfaces; 2018 Apr; 164():272-280. PubMed ID: 29413606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergistic stabilization of emulsions by a mixture of surface-active nanoparticles and surfactant.
    Binks BP; Desforges A; Duff DG
    Langmuir; 2007 Jan; 23(3):1098-106. PubMed ID: 17241019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial properties as stability predictors of lecithin-stabilized perfluorocarbon emulsions.
    Yoon JK; Burgess DJ
    Pharm Dev Technol; 1996 Dec; 1(4):333-41. PubMed ID: 9552317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing differences between Ostwald ripening and coalescence by rheology, laser diffraction and multiple light scattering.
    Santos J; Calero N; Trujillo-Cayado LA; Garcia MC; Muñoz J
    Colloids Surf B Biointerfaces; 2017 Nov; 159():405-411. PubMed ID: 28822289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of surfactant phase behavior on emulsification.
    Kaizu K; Alexandridis P
    J Colloid Interface Sci; 2016 Mar; 466():138-49. PubMed ID: 26724700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic formation and stabilization of oil-in-water emulsions by a weakly interacting mixture of zwitterionic surfactant and silica nanoparticles.
    Worthen AJ; Foster LM; Dong J; Bollinger JA; Peterman AH; Pastora LE; Bryant SL; Truskett TM; Bielawski CW; Johnston KP
    Langmuir; 2014 Feb; 30(4):984-94. PubMed ID: 24409832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emulsions Stabilized by Inorganic Nanoclays and Surfactants: Stability, Viscosity, and Implications for Applications.
    Zheng B; Zheng B; Carr AJ; Yu X; McClements DJ; Bhatia SR
    Inorganica Chim Acta; 2020 Aug; 508():. PubMed ID: 32377022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetically stable propofol emulsions with reduced free drug concentration for intravenous delivery.
    Damitz R; Chauhan A
    Int J Pharm; 2015; 486(1-2):232-41. PubMed ID: 25839419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions between Pluronics (F127 and F68) and bile salts (NaTDC) in the aqueous phase and the interface of oil-in-water emulsions.
    Torcello-Gómez A; Maldonado-Valderrama J; Jódar-Reyes AB; Foster TJ
    Langmuir; 2013 Feb; 29(8):2520-9. PubMed ID: 23383723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formulation and optimization by experimental design of eco-friendly emulsions based on d-limonene.
    Pérez-Mosqueda LM; Trujillo-Cayado LA; Carrillo F; Ramírez P; Muñoz J
    Colloids Surf B Biointerfaces; 2015 Apr; 128():127-131. PubMed ID: 25734966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of ionic strength on the interfacial viscoelasticity and stability of silk fibroin at the oil/water interface.
    Tang X; Qiao X; Miller R; Sun K
    J Sci Food Agric; 2016 Dec; 96(15):4918-4928. PubMed ID: 27256721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silicone/vegetable oil Janus emulsion: topological stability versus interfacial tensions and relative oil volumes.
    Leonardi GR; Perrechil FA; Silveira LP; Brunca HO; Friberg SE
    J Colloid Interface Sci; 2015 Jul; 449():31-7. PubMed ID: 25443127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emulsion characterization via microfluidic devices: A review on interfacial tension and stability to coalescence.
    Ho TM; Razzaghi A; Ramachandran A; Mikkonen KS
    Adv Colloid Interface Sci; 2022 Jan; 299():102541. PubMed ID: 34920366
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable Pickering emulsions with polymer-grafted lignin nanoparticles (PGLNs).
    Silmore KS; Gupta C; Washburn NR
    J Colloid Interface Sci; 2016 Mar; 466():91-100. PubMed ID: 26707776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Principles of emulsion stabilization with special reference to polymeric surfactants.
    Tadros T
    J Cosmet Sci; 2006; 57(2):153-69. PubMed ID: 16688378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating the Influence of Polysorbate 20/80 and Polaxomer P188 on the Surface & Interfacial Properties of Bovine Serum Albumin and Lysozyme.
    Begum F; Amin S
    Pharm Res; 2019 May; 36(7):107. PubMed ID: 31111248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fish oil-loaded emulsions stabilized by synergetic or competitive adsorption of gelatin and surfactants on oil/water interfaces.
    Zhang T; Ding M; Zhang H; Tao N; Wang X; Zhong J
    Food Chem; 2020 Mar; 308():125597. PubMed ID: 31648095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.