BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 28192158)

  • 41. Polymeric surfactants in disperse systems.
    Tadros T
    Adv Colloid Interface Sci; 2009; 147-148():281-99. PubMed ID: 19041086
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Emulsion stability and dilatational viscoelasticity of ovalbumin/chitosan complexes at the oil-in-water interface.
    Xiong W; Ren C; Tian M; Yang X; Li J; Li B
    Food Chem; 2018 Jun; 252():181-188. PubMed ID: 29478530
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The coalescence stability of protein-stabilized emulsions estimated by analytical photo-centrifugation.
    Cheetangdee N; Oki M; Fukada K
    J Oleo Sci; 2011; 60(8):419-27. PubMed ID: 21768743
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Relationship between rheological properties and one-step W/O/W multiple emulsion formation.
    Morais JM; Rocha-Filho PA; Burgess DJ
    Langmuir; 2010 Dec; 26(23):17874-81. PubMed ID: 21033721
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Some general features of limited coalescence in solid-stabilized emulsions.
    Arditty S; Whitby CP; Binks BP; Schmitt V; Leal-Calderon F
    Eur Phys J E Soft Matter; 2003 Jul; 11(3):273-281. PubMed ID: 15011047
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Protein-silicone oil interactions: comparative effect of nonionic surfactants on the interfacial behavior of a fusion protein.
    Dixit N; Maloney KM; Kalonia DS
    Pharm Res; 2013 Jul; 30(7):1848-59. PubMed ID: 23568525
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ostwald Ripening Rate of Orange Oil Emulsions: Effects of Molecular Structure of Emulsifiers and Their Oil Composition.
    Jang Y; Park J; Song HY; Choi SJ
    J Food Sci; 2019 Mar; 84(3):440-447. PubMed ID: 30714618
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Emulsification and emulsion stability: The role of the interfacial properties.
    Ravera F; Dziza K; Santini E; Cristofolini L; Liggieri L
    Adv Colloid Interface Sci; 2021 Feb; 288():102344. PubMed ID: 33359938
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of lecithin addition in oil or water phase on the stability of emulsions made with whey proteins.
    Yamamoto Y; Araki M
    Biosci Biotechnol Biochem; 1997 Nov; 61(11):1791-5. PubMed ID: 9404055
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of the conjugation of whey proteins with gellan polysaccharides on surfactant-induced competitive displacement from the air-water interface.
    Cai B; Ikeda S
    J Dairy Sci; 2016 Aug; 99(8):6026-6035. PubMed ID: 27265176
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Interaction of surfactant and protein at the O/W interface and its effect on colloidal and biological properties of polymeric nanocarriers.
    Del Castillo-Santaella T; Peula-García JM; Maldonado-Valderrama J; Jódar-Reyes AB
    Colloids Surf B Biointerfaces; 2019 Jan; 173():295-302. PubMed ID: 30308454
    [TBL] [Abstract][Full Text] [Related]  

  • 52. On the possible role of surface elasticity in emulsion stability.
    Georgieva D; Schmitt V; Leal-Calderon F; Langevin D
    Langmuir; 2009 May; 25(10):5565-73. PubMed ID: 19309117
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Carbon dioxide-in-oil emulsions stabilized with silicone-alkyl surfactants for waterless hydraulic fracturing.
    Alzobaidi S; Lee J; Jiries S; Da C; Harris J; Keene K; Rodriguez G; Beckman E; Perry R; Johnston KP; Enick R
    J Colloid Interface Sci; 2018 Sep; 526():253-267. PubMed ID: 29747039
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of electrolyte concentration and pH on the coalescence stability of beta-lactoglobulin emulsions: experiment and interpretation.
    Tcholakova S; Denkov ND; Sidzhakova D; Ivanov IB; Campbell B
    Langmuir; 2005 May; 21(11):4842-55. PubMed ID: 15896022
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Role of Endogenous Proteins on the Emulsification of Silicone Oils Used in Vitreoretinal Surgery.
    Nepita I; Repetto R; Pralits JO; Romano MR; Ravera F; Santini E; Liggieri L
    Biomed Res Int; 2020; 2020():2915010. PubMed ID: 32904511
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Formation and stability of paraffin oil-in-water nano-emulsions prepared by the emulsion inversion point method.
    Liu W; Sun D; Li C; Liu Q; Xu J
    J Colloid Interface Sci; 2006 Nov; 303(2):557-63. PubMed ID: 16905141
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A method for the preparation of submicron particles of sparingly water-soluble drugs by precipitation in oil-in-water emulsions. I: Influence of emulsification and surfactant concentration.
    Sjöström B; Kronberg B; Carlfors J
    J Pharm Sci; 1993 Jun; 82(6):579-83. PubMed ID: 8331529
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optimizing organoclay stabilized Pickering emulsions.
    Cui Y; Threlfall M; van Duijneveldt JS
    J Colloid Interface Sci; 2011 Apr; 356(2):665-71. PubMed ID: 21324469
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Surfactant-enhanced cellulose nanocrystal Pickering emulsions.
    Hu Z; Ballinger S; Pelton R; Cranston ED
    J Colloid Interface Sci; 2015 Feb; 439():139-48. PubMed ID: 25463186
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Measuring Interfacial Tension of Emulsions in Situ by Microfluidics.
    D'Apolito R; Perazzo A; D'Antuono M; Preziosi V; Tomaiuolo G; Miller R; Guido S
    Langmuir; 2018 May; 34(17):4991-4997. PubMed ID: 29642699
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.