BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 28192191)

  • 21. Dynamics of the regulation of Hsp90 by the co-chaperone Sti1.
    Lee CT; Graf C; Mayer FJ; Richter SM; Mayer MP
    EMBO J; 2012 Mar; 31(6):1518-28. PubMed ID: 22354036
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery.
    Meyer P; Prodromou C; Liao C; Hu B; Mark Roe S; Vaughan CK; Vlasic I; Panaretou B; Piper PW; Pearl LH
    EMBO J; 2004 Feb; 23(3):511-9. PubMed ID: 14739935
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The peptidyl-prolyl isomerase domain of the CyP-40 cyclophilin homolog Cpr7 is not required to support growth or glucocorticoid receptor activity in Saccharomyces cerevisiae.
    Duina AA; Marsh JA; Kurtz RB; Chang HC; Lindquist S; Gaber RF
    J Biol Chem; 1998 May; 273(18):10819-22. PubMed ID: 9556552
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nucleotide-dependent interaction of Saccharomyces cerevisiae Hsp90 with the cochaperone proteins Sti1, Cpr6, and Sba1.
    Johnson JL; Halas A; Flom G
    Mol Cell Biol; 2007 Jan; 27(2):768-76. PubMed ID: 17101799
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Hsp90 co-chaperones Cdc37 and Sti1 interact physically and genetically.
    Abbas-Terki T; Briand PA; Donzé O; Picard D
    Biol Chem; 2002 Sep; 383(9):1335-42. PubMed ID: 12437126
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A cyclophilin function in Hsp90-dependent signal transduction.
    Duina AA; Chang HC; Marsh JA; Lindquist S; Gaber RF
    Science; 1996 Dec; 274(5293):1713-5. PubMed ID: 8939862
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery.
    Meyer P; Prodromou C; Liao C; Hu B; Roe SM; Vaughan CK; Vlasic I; Panaretou B; Piper PW; Pearl LH
    EMBO J; 2004 Mar; 23(6):1402-10. PubMed ID: 15039704
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mutation of essential Hsp90 co-chaperones SGT1 or CNS1 renders yeast hypersensitive to overexpression of other co-chaperones.
    Johnson JL; Zuehlke AD; Tenge VR; Langworthy JC
    Curr Genet; 2014 Nov; 60(4):265-76. PubMed ID: 24923785
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Middle domain of human Hsp90 isoforms differentially binds Aha1 in human cells and alters Hsp90 activity in yeast.
    Synoradzki K; Bieganowski P
    Biochim Biophys Acta; 2015 Feb; 1853(2):445-52. PubMed ID: 25486457
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The conserved NxNNWHW motif in Aha-type co-chaperones modulates the kinetics of Hsp90 ATPase stimulation.
    Mercier R; Wolmarans A; Schubert J; Neuweiler H; Johnson JL; LaPointe P
    Nat Commun; 2019 Mar; 10(1):1273. PubMed ID: 30894538
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An Hsp90 co-chaperone protein in yeast is functionally replaced by site-specific posttranslational modification in humans.
    Zuehlke AD; Reidy M; Lin C; LaPointe P; Alsomairy S; Lee DJ; Rivera-Marquez GM; Beebe K; Prince T; Lee S; Trepel JB; Xu W; Johnson J; Masison D; Neckers L
    Nat Commun; 2017 May; 8():15328. PubMed ID: 28537252
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Hsp90/Cdc37p chaperone system is a determinant of molybdate resistance in Saccharomyces cerevisiae.
    Millson SH; Nuttall JM; Mollapour M; Piper PW
    Yeast; 2009 Jun; 26(6):339-47. PubMed ID: 19399909
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Large Rotation of the N-terminal Domain of Hsp90 Is Important for Interaction with Some but Not All Client Proteins.
    Daturpalli S; Knieß RA; Lee CT; Mayer MP
    J Mol Biol; 2017 May; 429(9):1406-1423. PubMed ID: 28363677
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-resolution structural analysis shows how Tah1 tethers Hsp90 to the R2TP complex.
    Back R; Dominguez C; Rothé B; Bobo C; Beaufils C; Moréra S; Meyer P; Charpentier B; Branlant C; Allain FH; Manival X
    Structure; 2013 Oct; 21(10):1834-47. PubMed ID: 24012479
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Hsp90 isoforms from S. cerevisiae differ in structure, function and client range.
    Girstmair H; Tippel F; Lopez A; Tych K; Stein F; Haberkant P; Schmid PWN; Helm D; Rief M; Sattler M; Buchner J
    Nat Commun; 2019 Aug; 10(1):3626. PubMed ID: 31399574
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular chaperone Hsp70/Hsp90 prepares the mitochondrial outer membrane translocon receptor Tom71 for preprotein loading.
    Li J; Qian X; Hu J; Sha B
    J Biol Chem; 2009 Aug; 284(35):23852-9. PubMed ID: 19581297
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural elements in the flexible tail of the co-chaperone p23 coordinate client binding and progression of the Hsp90 chaperone cycle.
    Biebl MM; Lopez A; Rehn A; Freiburger L; Lawatscheck J; Blank B; Sattler M; Buchner J
    Nat Commun; 2021 Feb; 12(1):828. PubMed ID: 33547294
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural basis for phosphorylation-dependent recruitment of Tel2 to Hsp90 by Pih1.
    Pal M; Morgan M; Phelps SE; Roe SM; Parry-Morris S; Downs JA; Polier S; Pearl LH; Prodromou C
    Structure; 2014 Jun; 22(6):805-18. PubMed ID: 24794838
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Asymmetric activation of the hsp90 dimer by its cochaperone aha1.
    Retzlaff M; Hagn F; Mitschke L; Hessling M; Gugel F; Kessler H; Richter K; Buchner J
    Mol Cell; 2010 Feb; 37(3):344-54. PubMed ID: 20159554
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural studies on the co-chaperone Hop and its complexes with Hsp90.
    Onuoha SC; Coulstock ET; Grossmann JG; Jackson SE
    J Mol Biol; 2008 Jun; 379(4):732-44. PubMed ID: 18485364
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.