BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 28192351)

  • 21. One-step preparation of ZVI-sludge derived biochar without external source of iron and its application on persulfate activation.
    Wang J; Shen M; Gong Q; Wang X; Cai J; Wang S; Chen Z
    Sci Total Environ; 2020 Apr; 714():136728. PubMed ID: 31982750
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Application of zero-valent iron coupled with biochar for removal of perfluoroalkyl carboxylic and sulfonic acids from water under ambient environmental conditions.
    Liu Y; Ptacek CJ; Baldwin RJ; Cooper JM; Blowes DW
    Sci Total Environ; 2020 Jun; 719():137372. PubMed ID: 32135327
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Removal of As from groundwater by in situ bioprecipitation and zero-valent iron.
    Tkaczynska A
    Water Sci Technol; 2013; 68(9):2055-60. PubMed ID: 24225108
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The application of illite supported nanoscale zero valent iron for the treatment of uranium contaminated groundwater.
    Jing C; Landsberger S; Li YL
    J Environ Radioact; 2017 Sep; 175-176():1-6. PubMed ID: 28407570
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994-2014).
    Guan X; Sun Y; Qin H; Li J; Lo IM; He D; Dong H
    Water Res; 2015 May; 75():224-48. PubMed ID: 25770444
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of biochar- and activated carbon-supported zerovalent iron for the removal of Se(IV) and Se(VI): influence of pH, ionic strength, and natural organic matter.
    Tan G; Mao Y; Wang H; Junaid M; Xu N
    Environ Sci Pollut Res Int; 2019 Jul; 26(21):21609-21618. PubMed ID: 31129892
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multi-objective optimization of permeable reactive barrier design for Cr(VI) removal from groundwater.
    Maamoun I; Eljamal O; Falyouna O; Eljamal R; Sugihara Y
    Ecotoxicol Environ Saf; 2020 Sep; 200():110773. PubMed ID: 32464445
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Enhanced remediation of 4-chloronitrobenzene contaminated groundwater with nanoscale zero-valence iron (nZVI) catalyzed hydrogen peroxide (H2O2)].
    Fu RB
    Huan Jing Ke Xue; 2014 Apr; 35(4):1351-7. PubMed ID: 24946587
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Removal of pharmaceutical compounds, artificial sweeteners, and perfluoroalkyl substances from water using a passive treatment system containing zero-valent iron and biochar.
    Liu Y; Blowes DW; Ptacek CJ; Groza LG
    Sci Total Environ; 2019 Nov; 691():165-177. PubMed ID: 31319253
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A field study of a novel permeable-reactive-biobarrier to remediate chlorinated hydrocarbons contaminated groundwater.
    Liu C; Chen X; Wang S; Luo Y; Du W; Yin Y; Guo H
    Environ Pollut; 2024 Jun; 351():124042. PubMed ID: 38679128
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Arsenic immobilization and removal in contaminated soil using zero-valent iron or magnetic biochar amendment followed by dry magnetic separation.
    Li J; Zhang Y; Wang F; Wang L; Liu J; Hashimoto Y; Hosomi M
    Sci Total Environ; 2021 May; 768():144521. PubMed ID: 33450681
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In-situ reductive degradation of chlorinated DNAPLs in contaminated groundwater using polyethyleneimine-modified zero-valent iron nanoparticles.
    Mdlovu NV; Lin KS; Chen CY; Mavuso FA; Kunene SC; Carrera Espinoza MJ
    Chemosphere; 2019 Jun; 224():816-826. PubMed ID: 30851533
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Zero valent iron reduces toxicity and concentrations of organophosphate pesticides in contaminated groundwater.
    Fjordbøge AS; Baun A; Vastrup T; Kjeldsen P
    Chemosphere; 2013 Jan; 90(2):627-33. PubMed ID: 23021613
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Arsenic removal from aqueous solutions and groundwater using agricultural biowastes-derived biosorbents and biochar: a column-scale investigation.
    Tabassum RA; Shahid M; Niazi NK; Dumat C; Zhang Y; Imran M; Bakhat HF; Hussain I; Khalid S
    Int J Phytoremediation; 2019; 21(6):509-518. PubMed ID: 30924354
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sequential coupling of bio-augmented permeable reactive barriers for remediation of 1,1,1-trichloroethane contaminated groundwater.
    Wang W; Wu Y
    Environ Sci Pollut Res Int; 2019 Apr; 26(12):12042-12054. PubMed ID: 30827025
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced degradation of ortho-nitrochlorobenzene by the combined system of zero-valent iron reduction and persulfate oxidation in soils.
    Xu HB; Zhao DY; Li YJ; Liu PY; Dong CX
    Environ Sci Pollut Res Int; 2014 Apr; 21(7):5132-40. PubMed ID: 24385185
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis of the magnetic biochar composites for use as an adsorbent for the removal of pentachlorophenol from the effluent.
    Devi P; Saroha AK
    Bioresour Technol; 2014 Oct; 169():525-531. PubMed ID: 25089893
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reduced graphene oxide-nano zero value iron (rGO-nZVI) micro-electrolysis accelerating Cr(VI) removal in aquifer.
    Ren L; Dong J; Chi Z; Huang H
    J Environ Sci (China); 2018 Nov; 73():96-106. PubMed ID: 30290877
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced hexavalent chromium removal performance and stabilization by magnetic iron nanoparticles assisted biochar in aqueous solution: Mechanisms and application potential.
    Zhu S; Huang X; Wang D; Wang L; Ma F
    Chemosphere; 2018 Sep; 207():50-59. PubMed ID: 29772424
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced As(III) oxidation and removal by combined use of zero valent iron and hydrogen peroxide in aerated waters at neutral pH values.
    Katsoyiannis IA; Voegelin A; Zouboulis AI; Hug SJ
    J Hazard Mater; 2015 Oct; 297():1-7. PubMed ID: 25935405
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.